Let G be a simple connected graph and its Laplacian eigenvalues be µ1≥ µ2≥…≥ µn-1≥ µn=0. In this paper, we present an upper bound for the algebraic connectivity µn-1 of G and a lower bound for the largest eigenvalue µ1 of G in terms of the degree sequence d1,d2,…,dn of G and the number Ni∩Nj of common vertices of i and j (1≤i<j≤n) and hence we improve bounds of Maden and Büyükköse [14].
Büyükköse, Ş., Altınışık, E., & Yalçın, F. (2015). Improved Bounds for the Extremal Non-Trivial Laplacian Eigenvalues. Gazi University Journal of Science, 28(1), 65-68.
AMA
Büyükköse Ş, Altınışık E, Yalçın F. Improved Bounds for the Extremal Non-Trivial Laplacian Eigenvalues. Gazi University Journal of Science. February 2015;28(1):65-68.
Chicago
Büyükköse, Şerife, Ercan Altınışık, and Feyza Yalçın. “Improved Bounds for the Extremal Non-Trivial Laplacian Eigenvalues”. Gazi University Journal of Science 28, no. 1 (February 2015): 65-68.
EndNote
Büyükköse Ş, Altınışık E, Yalçın F (February 1, 2015) Improved Bounds for the Extremal Non-Trivial Laplacian Eigenvalues. Gazi University Journal of Science 28 1 65–68.
IEEE
Ş. Büyükköse, E. Altınışık, and F. Yalçın, “Improved Bounds for the Extremal Non-Trivial Laplacian Eigenvalues”, Gazi University Journal of Science, vol. 28, no. 1, pp. 65–68, 2015.
ISNAD
Büyükköse, Şerife et al. “Improved Bounds for the Extremal Non-Trivial Laplacian Eigenvalues”. Gazi University Journal of Science 28/1 (February 2015), 65-68.
JAMA
Büyükköse Ş, Altınışık E, Yalçın F. Improved Bounds for the Extremal Non-Trivial Laplacian Eigenvalues. Gazi University Journal of Science. 2015;28:65–68.
MLA
Büyükköse, Şerife et al. “Improved Bounds for the Extremal Non-Trivial Laplacian Eigenvalues”. Gazi University Journal of Science, vol. 28, no. 1, 2015, pp. 65-68.
Vancouver
Büyükköse Ş, Altınışık E, Yalçın F. Improved Bounds for the Extremal Non-Trivial Laplacian Eigenvalues. Gazi University Journal of Science. 2015;28(1):65-8.