Year 2015,
Volume: 28 Issue: 2, 169 - 174, 22.06.2015
Hatice Baş
,
Suna Kalender
,
Hatice Karaboduk
Fatma Apaydın
References
- Latif, R., Malek, M., Mirmonsef, H., “Cadmium and lead accumulation in three endogeic earthworm species”, Bull. Environ. Contam. Toxicol. 90: 456–459 (2013). [2]
- “Embryotoxicity hazard assessment of cadmium and L., Bremer,
- S., arsenic compounds using embryonic stem cells”, Toxicology 252: 118–122 (2008).
- Garcia-Nino, W.R., Pedraza-Chaverri, J., “Protective effect of curcumin against heavy metals-induced liver damage”, Food Chem. Toxicol. 69: 182–201 (2014).
- Alissa, E., Ferns, G., “Heavy metal poisoning and cardiovascular disease”, J. Toxicol. 2011: 1–21 (2011).
- Zbakh, H., Abbassi, A.E., “Potential use of olive mill wastewater in the preparation of functional beverages: a review”, J. Funct. Food 4: 450–458 (2012).
- Nevin, R., “Understanding international crime trends: the legacy of preschool lead exposure”, Environ. Res. 104: 315–336 (2007). [7] Dewanjee,
- Gangopadhyay, M., “Toxic effects of lead exposure in Wistar rats: involvement of oxidative stress and the beneficial role of edible jute (Corchorus olitorius) leaves”, Food Chem. Toxicol. 55: 78–91 (2013).
- S., Piccoli, C., D'Aprile, A., Scrima, R., Ambrosi, L., Zefferino, R., Capitanio, N., “Subcytotoxic mercury chloride
- communication by a redox- and phosphorylation- mediated mechanism”, Free Radical Biol. Med. 52: 916– 927 (2012). junction
- intercellular [9] Zhang, F.S., Nriagu, J.O., Itoh, H., “Mercury removal from water using activated carbons derived from organic sewage sludge”, Water Res. 39: 389–395 (2005).
- Yavuz, H., Denizli, A., Gungunes, H., Safarikova, M., Safarik, I., “Biosorption of mercury on magnetically modified yeast cells”, Sep. Purif. Technol. 52: 253–260 (2006).
- Inbaraj, B.S., Wang, J.S., Lu, J.F., Siao, F.Y., Chen, B.H., “Adsorption of toxic mercury(II) by an extracellular
- Bioresource Technol. 100(1): 200-207 (2009). poly(c-glutamic
- acid)”, [12] Baş, H., Kalender, S., Pandır, D., “In vitro effects of quercetin on oxidative stress mediated in human erythrocytes by benzoic acid and citric acid”, Folia Biol- Krakow 62(1): 59-66 (2014).
- Liu, C., Ma, J., Sun, Y., “Quercetin protects the rat kidney against oxidative stress mediated DNA damage and apoptosis induced by lead”, Environ. Toxicol. Pharmacol. 30: 264-271 (2010).
- Yole, M., Wickstrom, M., Blakley, B., “Cell death and cytotoxic effects in YAC-1 lymphoma cells following exposure to various forms of mercury”, Toxicology 231: 40-57 (2007).
- Sharma, V., Sharma, A., Kansal, L., “The effect of oral administration of Allium sativum extracts on lead nitrate induced toxicity in male mice”, Food Chem. Toxicol. 48: 928-936 (2010).
- Plastunov, B., Zub, S., “Lipid peroxidation processes and antioxidant defense under lead intoxication and iodine-deficient in experiment”, Anales Universitatis Mariae Curie Sklodowska Lublin-pol. 21: 215–217 (2008).
- Ohkawa, H., Ohishi, N., Yagi, K., “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction”, Anal. Biochem. 95: 351-358 (1979).
- Marklund, S., Marklund, G., “Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase”, Eur. J. Biochem. 47: 469-474 (1974).
- Habig, W.H., Pabst, M.J., Jakoby, W.B., “Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation”, J. Biol. Chem. 249: 7130- 7139 (1974).
- Aebi, H., “Catalase in vitro”, Methods Enzymol. 105: 121-126 (1984).
- Paglia, D.E., Valentine, W.N., “Studies on the quantative and qualitative characterization of glutathione peroxidase”, J. Lab. Clin. Med. 70: 158-165 (1987).
- Valavanidis, A., Vlahogianni, T., Dassenkis, M., Scoullos. M., “Molecular biomarker of oxidative stress in aquatic organisms in relation to toxic environmental pollutants”, Ecotoxicol. Environ. 64: 178–189 (2006).
- Sarkar, S., Mukherjee, S., Chattopadhyay, A., Bhattacharya, S., “Low dose of arsenic trioxide triggers oxidative stress in zebrafish brain: Expression of antioxidant genes”, Ecotoxicol. Environ. Saf. 107: 1–8 (2014).
- Jurczuk, M., Moniuszko-Jakoniuk, J., Brzoska, M.M., “Hepatic and renal concentrations of vitamins E and C in lead- and ethanol-exposed rats: an assessment of their involvement in the mechanisms of peroxidative damage”, Food Chem. Toxicol. 45: 1478–1486 (2007).
- Franco, R., Sánchez-Olea, R., Reyes-Reyes, E.M., Panayiotidis, M.I., “Environmental toxicity, oxidative stress and apoptosis: menage a trois”, Mutation Res. 674, 3–22 (2009).
- Upasani, C.D., Khera, A., Balaraman, R., “Effect of lead
- malondialdehyde: conjugated dienes and hydroperoxides in rats”, Ind. J. Exp. Biol. 39: 70–74 (2001). C, or Spirulina
- on Patrick, L., “Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity”, Altern. Med. Rev. 11: 114–127 (2006).
- Paidi, M.D., Schjoldager, J.G., Lykkesfeldt, J., Tveden-Nyborg, P., “Prenatal vitamin C defficiency results in differential levels of oxidative stress during late gestation in foetal guinea pig brains”, Redox Biology 2: 361–367 (2014).
- Al-azzawie, H.F., Umran, A., Hyader, N.H., “Oxidative stress, antioxidant status and DNA damage in a mercury exposure workers”, Br. J. Pharmacol. Toxicol. 4: 80–88 (2013).
- Pal, M., Ghosh, M., “Studies on comparative efficacy of a-linolenic acid and aeleostearic acid on prevention of organic mercury-induced oxidative stress in kidney and liver of rat”, Food Chem. Toxicol. 50: 1066– 1072 (2012).
- Lakshmi, B.V.S., Sudhakar, M., Aparna, M., “Protective potential of black grapes against lead induced oxidative stress in rats”, Environ. Toxicol. Pharmacol. 35: 361-368 (2013).Architecture of Gazi University” Vol: 26, No:4,833-840, 2011.
The Effects on Antioxidant Enzyme Systems in Rat Brain Tissues of Lead Nitrate and Mercury Chloride
Year 2015,
Volume: 28 Issue: 2, 169 - 174, 22.06.2015
Hatice Baş
,
Suna Kalender
,
Hatice Karaboduk
Fatma Apaydın
Abstract
The present study was undertaken to evaluate the effects of lead nitrate and mercury chloride in brain tissues of Wistar rats. Mercury chloride (0.02 mg/kg bw) and lead nitrate (45 mg/kg bw) were administered orally for 28 days rats. The mercury chloride and lead nitrate treated animals were exhibited a significant inhibition of superoxide dismutase, catalase, glutation peroxidase and glutathione-S-transferase activities and increasing of malondialdehyde levels. In our present study mercury chloride caused more harmful effects than lead nitrate. The effect which we observed applying the lead nitrate and mercury chloride together, was more greater than when we used them alone.
References
- Latif, R., Malek, M., Mirmonsef, H., “Cadmium and lead accumulation in three endogeic earthworm species”, Bull. Environ. Contam. Toxicol. 90: 456–459 (2013). [2]
- “Embryotoxicity hazard assessment of cadmium and L., Bremer,
- S., arsenic compounds using embryonic stem cells”, Toxicology 252: 118–122 (2008).
- Garcia-Nino, W.R., Pedraza-Chaverri, J., “Protective effect of curcumin against heavy metals-induced liver damage”, Food Chem. Toxicol. 69: 182–201 (2014).
- Alissa, E., Ferns, G., “Heavy metal poisoning and cardiovascular disease”, J. Toxicol. 2011: 1–21 (2011).
- Zbakh, H., Abbassi, A.E., “Potential use of olive mill wastewater in the preparation of functional beverages: a review”, J. Funct. Food 4: 450–458 (2012).
- Nevin, R., “Understanding international crime trends: the legacy of preschool lead exposure”, Environ. Res. 104: 315–336 (2007). [7] Dewanjee,
- Gangopadhyay, M., “Toxic effects of lead exposure in Wistar rats: involvement of oxidative stress and the beneficial role of edible jute (Corchorus olitorius) leaves”, Food Chem. Toxicol. 55: 78–91 (2013).
- S., Piccoli, C., D'Aprile, A., Scrima, R., Ambrosi, L., Zefferino, R., Capitanio, N., “Subcytotoxic mercury chloride
- communication by a redox- and phosphorylation- mediated mechanism”, Free Radical Biol. Med. 52: 916– 927 (2012). junction
- intercellular [9] Zhang, F.S., Nriagu, J.O., Itoh, H., “Mercury removal from water using activated carbons derived from organic sewage sludge”, Water Res. 39: 389–395 (2005).
- Yavuz, H., Denizli, A., Gungunes, H., Safarikova, M., Safarik, I., “Biosorption of mercury on magnetically modified yeast cells”, Sep. Purif. Technol. 52: 253–260 (2006).
- Inbaraj, B.S., Wang, J.S., Lu, J.F., Siao, F.Y., Chen, B.H., “Adsorption of toxic mercury(II) by an extracellular
- Bioresource Technol. 100(1): 200-207 (2009). poly(c-glutamic
- acid)”, [12] Baş, H., Kalender, S., Pandır, D., “In vitro effects of quercetin on oxidative stress mediated in human erythrocytes by benzoic acid and citric acid”, Folia Biol- Krakow 62(1): 59-66 (2014).
- Liu, C., Ma, J., Sun, Y., “Quercetin protects the rat kidney against oxidative stress mediated DNA damage and apoptosis induced by lead”, Environ. Toxicol. Pharmacol. 30: 264-271 (2010).
- Yole, M., Wickstrom, M., Blakley, B., “Cell death and cytotoxic effects in YAC-1 lymphoma cells following exposure to various forms of mercury”, Toxicology 231: 40-57 (2007).
- Sharma, V., Sharma, A., Kansal, L., “The effect of oral administration of Allium sativum extracts on lead nitrate induced toxicity in male mice”, Food Chem. Toxicol. 48: 928-936 (2010).
- Plastunov, B., Zub, S., “Lipid peroxidation processes and antioxidant defense under lead intoxication and iodine-deficient in experiment”, Anales Universitatis Mariae Curie Sklodowska Lublin-pol. 21: 215–217 (2008).
- Ohkawa, H., Ohishi, N., Yagi, K., “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction”, Anal. Biochem. 95: 351-358 (1979).
- Marklund, S., Marklund, G., “Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase”, Eur. J. Biochem. 47: 469-474 (1974).
- Habig, W.H., Pabst, M.J., Jakoby, W.B., “Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation”, J. Biol. Chem. 249: 7130- 7139 (1974).
- Aebi, H., “Catalase in vitro”, Methods Enzymol. 105: 121-126 (1984).
- Paglia, D.E., Valentine, W.N., “Studies on the quantative and qualitative characterization of glutathione peroxidase”, J. Lab. Clin. Med. 70: 158-165 (1987).
- Valavanidis, A., Vlahogianni, T., Dassenkis, M., Scoullos. M., “Molecular biomarker of oxidative stress in aquatic organisms in relation to toxic environmental pollutants”, Ecotoxicol. Environ. 64: 178–189 (2006).
- Sarkar, S., Mukherjee, S., Chattopadhyay, A., Bhattacharya, S., “Low dose of arsenic trioxide triggers oxidative stress in zebrafish brain: Expression of antioxidant genes”, Ecotoxicol. Environ. Saf. 107: 1–8 (2014).
- Jurczuk, M., Moniuszko-Jakoniuk, J., Brzoska, M.M., “Hepatic and renal concentrations of vitamins E and C in lead- and ethanol-exposed rats: an assessment of their involvement in the mechanisms of peroxidative damage”, Food Chem. Toxicol. 45: 1478–1486 (2007).
- Franco, R., Sánchez-Olea, R., Reyes-Reyes, E.M., Panayiotidis, M.I., “Environmental toxicity, oxidative stress and apoptosis: menage a trois”, Mutation Res. 674, 3–22 (2009).
- Upasani, C.D., Khera, A., Balaraman, R., “Effect of lead
- malondialdehyde: conjugated dienes and hydroperoxides in rats”, Ind. J. Exp. Biol. 39: 70–74 (2001). C, or Spirulina
- on Patrick, L., “Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity”, Altern. Med. Rev. 11: 114–127 (2006).
- Paidi, M.D., Schjoldager, J.G., Lykkesfeldt, J., Tveden-Nyborg, P., “Prenatal vitamin C defficiency results in differential levels of oxidative stress during late gestation in foetal guinea pig brains”, Redox Biology 2: 361–367 (2014).
- Al-azzawie, H.F., Umran, A., Hyader, N.H., “Oxidative stress, antioxidant status and DNA damage in a mercury exposure workers”, Br. J. Pharmacol. Toxicol. 4: 80–88 (2013).
- Pal, M., Ghosh, M., “Studies on comparative efficacy of a-linolenic acid and aeleostearic acid on prevention of organic mercury-induced oxidative stress in kidney and liver of rat”, Food Chem. Toxicol. 50: 1066– 1072 (2012).
- Lakshmi, B.V.S., Sudhakar, M., Aparna, M., “Protective potential of black grapes against lead induced oxidative stress in rats”, Environ. Toxicol. Pharmacol. 35: 361-368 (2013).Architecture of Gazi University” Vol: 26, No:4,833-840, 2011.