Research Article
BibTex RIS Cite

𝑞 −Bernoulli Matrices and Their Some Properties

Year 2015, Volume: 28 Issue: 2, 269 - 273, 22.06.2015

Abstract

In this study, we define 𝑞 −Bernoulli matrix B( ) q and 𝑞 −Bernoulli polynomial matrix B( , ) x q by using 𝑞 −Bernoulli numbers, and polynomials respectively. We obtain some properties of B( ) q and B( , ) x q . We obtain factorizations 𝑞 −Bernoulli polynomial matrix and shifted 𝑞 −Bernoulli matrix using special matrices.

References

  • Bernoulli, J., “Ars conjectandi”, Published Posthumously Basel, Switzerland, 1-33, (1713).
  • Nörlund, N. E., “Vorlesungen uber dierenzenrechnung”, Chelsea Publishing Company, New York, (1924).
  • Carlitz, L., “Some theorems on Bernoulli Numbers of higher order received”, Pacic J. Math., 2: 127-139 (1952).
  • Carlitz, L., “ −Bernoulli numbers and polynomials”, Duke Math. J., 15 (4): 987-1000 (1948).
  • Carlitz, L., “Expansions of −Bernoulli numbers”, Duke Math. J., 25, 355-364 (1958).
  • Kac, V., Cheung P., “Quantum Calculus”, Springer, New York (2002)
  • Lalin, M. N., “Bernoulli numbers” Junior Number Theory Seminar-Universty of Texas at Austin September 6th (2005)
  • Zhang, Z.,Whang,J., “Bernoulli matrix and its algebraic properties” Discrete Appl. Math., 154: 1622-1632 (2006).
  • Ernst,T., “ −Pascal and −Bernoulli matrices and umbral approach”, Department of Mathematics Uppsala Universty D.M. Report 2008:23 (2008).
  • Hegazi, A. S. and Mansour, M., “A note on −Bernoulli numbers Phys.,13(1):9-18(2005). J. Nonlinear Math.
  • Song, S.-Z., Cheon, G.-S., Jun, Y.-B., and Beasley, L.-B., “A − analogue of the generalized factorial numbers”, J. Korean Math. Soc., 47, 645-657 (2010).
Year 2015, Volume: 28 Issue: 2, 269 - 273, 22.06.2015

Abstract

References

  • Bernoulli, J., “Ars conjectandi”, Published Posthumously Basel, Switzerland, 1-33, (1713).
  • Nörlund, N. E., “Vorlesungen uber dierenzenrechnung”, Chelsea Publishing Company, New York, (1924).
  • Carlitz, L., “Some theorems on Bernoulli Numbers of higher order received”, Pacic J. Math., 2: 127-139 (1952).
  • Carlitz, L., “ −Bernoulli numbers and polynomials”, Duke Math. J., 15 (4): 987-1000 (1948).
  • Carlitz, L., “Expansions of −Bernoulli numbers”, Duke Math. J., 25, 355-364 (1958).
  • Kac, V., Cheung P., “Quantum Calculus”, Springer, New York (2002)
  • Lalin, M. N., “Bernoulli numbers” Junior Number Theory Seminar-Universty of Texas at Austin September 6th (2005)
  • Zhang, Z.,Whang,J., “Bernoulli matrix and its algebraic properties” Discrete Appl. Math., 154: 1622-1632 (2006).
  • Ernst,T., “ −Pascal and −Bernoulli matrices and umbral approach”, Department of Mathematics Uppsala Universty D.M. Report 2008:23 (2008).
  • Hegazi, A. S. and Mansour, M., “A note on −Bernoulli numbers Phys.,13(1):9-18(2005). J. Nonlinear Math.
  • Song, S.-Z., Cheon, G.-S., Jun, Y.-B., and Beasley, L.-B., “A − analogue of the generalized factorial numbers”, J. Korean Math. Soc., 47, 645-657 (2010).
There are 11 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mathematics
Authors

Naim Tuglu

Semra Kuş This is me

Publication Date June 22, 2015
Published in Issue Year 2015 Volume: 28 Issue: 2

Cite

APA Tuglu, N., & Kuş, S. (2015). 𝑞 −Bernoulli Matrices and Their Some Properties. Gazi University Journal of Science, 28(2), 269-273.
AMA Tuglu N, Kuş S. 𝑞 −Bernoulli Matrices and Their Some Properties. Gazi University Journal of Science. June 2015;28(2):269-273.
Chicago Tuglu, Naim, and Semra Kuş. “𝑞 −Bernoulli Matrices and Their Some Properties”. Gazi University Journal of Science 28, no. 2 (June 2015): 269-73.
EndNote Tuglu N, Kuş S (June 1, 2015) 𝑞 −Bernoulli Matrices and Their Some Properties. Gazi University Journal of Science 28 2 269–273.
IEEE N. Tuglu and S. Kuş, “𝑞 −Bernoulli Matrices and Their Some Properties”, Gazi University Journal of Science, vol. 28, no. 2, pp. 269–273, 2015.
ISNAD Tuglu, Naim - Kuş, Semra. “𝑞 −Bernoulli Matrices and Their Some Properties”. Gazi University Journal of Science 28/2 (June 2015), 269-273.
JAMA Tuglu N, Kuş S. 𝑞 −Bernoulli Matrices and Their Some Properties. Gazi University Journal of Science. 2015;28:269–273.
MLA Tuglu, Naim and Semra Kuş. “𝑞 −Bernoulli Matrices and Their Some Properties”. Gazi University Journal of Science, vol. 28, no. 2, 2015, pp. 269-73.
Vancouver Tuglu N, Kuş S. 𝑞 −Bernoulli Matrices and Their Some Properties. Gazi University Journal of Science. 2015;28(2):269-73.