Öz
Spoofed speech detection is recently gaining attention of the researchers as speaker verification is shown to be vulnerable to spoofing attacks such as voice conversion, speech synthesis, replay, and impersonation. Although various different methods have been proposed to detect spoofed speech, their performances decrease dramatically under the mismatched conditions due to the additive or reverberant noises. Conventional speech enhancement methods fail to recover the performance gap, hence more advanced techniques seem to be necessary to solve the noisy spoofed speech detection problem. In this work, Denoising Autoencoder (DAE) is used to obtain clean estimates of i-vectors from their noisy versions. ASVspoof 2015 database is used in the experiments with five different noise types, added to the original utterances at 0, 10, and 20 dB signal-to-noise ratios (SNR). The experimental results verified that the DAE provides a more robust spoof detection, where the conventional methods fail.
Teşekkür
This study was supported by TUBITAK under project no. 121E057.