Research Article
BibTex RIS Cite

Denim Kumaşlar için Abclass-Miner Sınıflandırma Algoritması

Year 2024, Volume: 37 Issue: 1, 326 - 337, 01.03.2024
https://doi.org/10.35378/gujs.1185130

Abstract

Hızla gelişen bilişim teknolojileri (BT) ile büyük miktarda verinin elde edilmesi ve saklanması kolaylaşmıştır. Ancak üretilen ve kaydedilen tek başına bir anlam ifade etmeyen veriler ancak belirli bir amaç için işlendiğinde anlamlı hale gelmektedir. Ham veriyi anlamlı bilgiye dönüştürmek veri madenciliği ile yapılabilmektedir. Bu çalışmada, denim kumaş üretim parametrelerine göre denim kumaş kalite özelliklerinin sınıflandırılması ve analizi yapılmıştır. Bu çalışma, yeni bir sınıflandırma kuralı çıkarım algoritması önermektedir. Önerilen algoritma, esas olarak Yapay Arı Kolonisi Optimizasyonu (ABC) olarak bilinen bir sürü zekası meta-sezgiseline dayanmaktadır. Algoritmanın her adımında görevli arı aşaması ve gözcü arı aşaması olarak adlandırılan iki aşama vardır. Bu algoritma ilgili literatürdeki sınıflandırma algoritmaları ile karşılaştırılmıştır. Önerilen bu algoritma, çeşitli meta-sezgisel ve sinir ağlarını akıllıca birleştiren ve sınıflandırma kuralları oluşturabilen yeni bir veri madenciliği aracıdır. Elde edilen sonuçlar, geliştirilen veri madenciliği yaklaşımlarının denim kumaş üretiminde ağırlık ve genişlik analizinde oldukça faydalı olabileceğini göstermektedir.

Supporting Institution

TÜBİTAK

Project Number

TEYDEB-1505, 5200006

References

  • [1] Erdem, S., Özdağoğlu, G., “Analyzing of emergency data of a training and research hospital in aegean region using data mining”, Anadolu University Journal of Science and Technology, 9(2): 261-270, (2008).
  • [2] Frawley, W., Piatetsky-Shapiro, G., Maktheus, CW., “Knowledge discovery in databases: an overview”, AI Magazine, 13(3): 213–238, (1992).
  • [3] Han, J., Kamber, M., “Data mining: Concepts and techniques”, San Francisco, CA: Morgan Kaufmann Publishers, (2001).
  • [4] Yildirim, P., Birant, D., Alpyildiz, T., “Data mining and machine learning in textile industry”, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(1): e1228-e1248, (2017).
  • [5] Ozaydin, B., Hardin, J.M., Chhieng, D.C., “Data mining and clinical decision support systems”, Clinical Decision Support Systems, 45–68, (2016).
  • [6] Khedr, A. E., Idrees, A.M., Hegazy, A.E.-F., El-Shewy, S., “A proposed configurable approach for recommendation systems via data mining techniques”, Enterprise Information Systems, 12(2): 196-217, (2017).
  • [7] Stahl, F., Gabrys, B., Gaber, M.M., Berendsen, M., “An overview of interactive visual data mining techniques for knowledge discovery”, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(4): 239–256, (2013).
  • [8] Viloria, A., Acuña, G.C., Alcázar Franco, D.J., Hernández-Palma, H., Fuentes, J.P., Rambal, E.P., “Integration of data mining techniques to postgreSQL database manager system”, Procedia Computer Science, 155: 575–580, (2019).
  • [9] Chang, W., Hongjun, G., Rui, S., Huiling, S., “Technological potential analysis and vacant technology forecasting in the graphene field based on the patent data mining”, Resources Policy, 77 (1): 102636, (2022).
  • [10] Xiang, Q., Lv, Z.J., Yang, J.G., Yin, X.G., “Mining rule of quality control for spinning process with rough set theory”, Applied Mechanics and Materials, 80-81: 1021-1026, (2011).
  • [11] Deng, Z., Wang, L., Wang, X., “An integrated method of feature extraction and objective evaluation of fabric pilling”, The Journal of the Textile Institute, 102(1): 1-13, (2011).
  • [12] Kumar, K.V.N., Ragupathy, U.S., “An intelligent scheme for fault detection in textile web materials”, International Journal of Computer Applications 46(10): 24-29, (2012).
  • [13] Xiang, Q., Lv, Z.J., Yang, J.G., “A novel data mining method on quality control within spinning process”, Applied Mechanics and Materials, 224: 87–92, (2012).
  • [14] Mozafary, V., Payvandy, P., “Application of data mining techniq ue in predicting worsted spun yarn quality”, The Journal of The Textile Institute, 105(1): 100-108, (2013).
  • [15] Pang, KV., Chan, HL., “Data mining-based algorithm for storage location assignment in a randomised warehouse”, International Journal of Production Research, 55(14): 4035-4052, (2017).
  • [16] Mohanty, AK., Bag, A., “Detection and classification of fabric defects in textile using image mining and association rule miner”, International Journal of Electrical, Electronics and Computers (EEC Journal), 2(3): 28-33, (2017).
  • [17] Lizarraga-Morales RA., Correa-Tome FE., Sanchez-Yanez RE., Cepeda-Negrete J., “On the use of binary features in a rule-based approach for defect detection on textiles”, IEEE Access, 7: 18042-18049, (2019).
  • [18] Revathy, G., Gomathi, T., Sathish, E., “A comparative study for fault detection and classification in textile web materials”, Journal of Xi'an University of Architecture & Technology, 12(12), (2020).
  • [19] Das S., Ghosh A., “Rough set-based decision tool for classification of cotton yarn neps”, Journal of The Institution of Engineers (India), 102: 1–10, (2020).
  • [20] Bhuvaneshwarri, I., Tamilarasi, A., “Artificial intelligence and evolutionary computations in engineering systems”, Advances in Intelligent Systems and Computing, 1056: 69-77, (2020).
  • [21] Bhuvaneshwarri, I., Tamilarasi, A., “Predicting the fabric width of single jersey cotton knitted fabric using appropriate software”, Industria Textila, 70(6): 538-546, (2019).
  • [22] Deng, X., Zeng, X., Vroman, P., Koehl, L., “An intelligent multi-criteria optimization method for quick and market-oriented textile material design”, Journal of Global Optimization, 51(2): 227-244, (2010).
  • [23] Fu, Y., Chen, S., Chang, L., “Ant colony algorithm’s application of textile monitoring image recognition”, Advanced Materials Research, 328: 1701-1704, (2011).
  • [24] Zhao, X., Li, D., Yang, B., Ma, C., Zhu, Y., Chen, H., “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton”, Applied Soft Computing, 24: 585-596, (2014).
  • [25] Xue, Z., Zeng, X., Koehl, L., Shen, L., “Development of an intelligent model to predict tactile properties from visual features of textile products”, 2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), (2015).
  • [26] Zhao, X., Liu X., Li, D., Chen, H., Liu, S., Yang, X., Zhan, S., Zhao, W., “Comparative study on metaheuristic-based feature selection for cotton foreign fibers recognition”, International Conference on Computer and Computing Technologies in Agriculture, 8-18, (2015).
  • [27] Amor, N., Noman, MT., Petru, M., Mahmood, A., Ismail, A., “Neural network-crow search model for the prediction of functional properties of nano TiO2 coated cotton composites”, Scientific Reports, 11(1): 13649, (2021).
  • [28] Periyasamy, A.P., Ramamoorthy, S.K., Lavate, S.S., “Eco-friendly denim processing”, Handbook of Ecomaterials, 1559–1579, (2019).
  • [29] Karthik, T., Murugan, R., “Carbon footprint in denim manufacturing”, Sustainability in Denim, 125–159, (2017).
  • [30] Üstündağ, S., “Development of elastic hybrid yarns that can be used in denim fabric production”, Master Thesis, Erciyes University Institute of Science and Technology, Kayseri, (2014).
  • [31] Dirican, A., “Evaluation and comparison of diagnostic test performance”, Cerrahpaşa Medical Journal, 32: 25-30, (2001).
  • [32] Niuniu X., Yuxun, L., “Review of decision trees”, The Third IEEE International Conference on Computer Science and Information Technology, 5: 105-109, (2010).
  • [33] Fan, W., Wang, H., Yu, P.S., Ma, S., “Is random model better? On its accuracy and efficiency”, The Third IEEE International Conference on Data Mining, 51-58, (2003).
  • [34] Duggal, P., Shukla, S., “Prediction of thyroid disorders using advanced machine learning techniques”, 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), 670-675, (2020).
  • [35] Domingos, P., Hulten, G., “Mining high-speed data streams”, Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, 71-80, (2000).
  • [36] Domingos, P., Pazzani, M., “Beyond independence: Conditions for optimality of a simple Bayesian classifier”, Machine Learning, 29: 103-130, (1997).
  • [37] John GH, Langley, P., “Estimating continuous distributions in Bayesian classifiers”, Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (UAI'95): 338-345, (1995).
  • [38] Landwehr, N., Hall, M., Frank, E., “Logistic model trees”, Machine Learning, 59(1): 161-205, (2005).
  • [39] Ron K., “The power of Decision Tables”, European Conference on Machine Learning (ECML), (1995).
  • [40] Ghosh, A., Guha, T., Bhar, R.B., “Identification of handloom and powerloom fabrics using proximal support vector machines”, Indian Journal of Fibre and Textile Research, 40(1): 87-93, (2015).
  • [41] Ertaş, O. G., Zervent Ünal, B., Çelik, N., “Analyzing the effect of the elastane-containing dual-core weft yarn density on the denim fabric performance properties”, The Journal of The Textile Institute, 107(1): 116-126, (2016).
  • [42] Gürkan Ünal, P., Konal, D., “Investigation of the effect of weft yarn parameters on the elasticity and recovery properties of stretch denim fabrics”, Journal of Natural Fibers, 19(13): 7186-7198, (2021).

Developed ABCLASS-Miner Classification Algorithm Based Rule Extraction for Denim Fabrics

Year 2024, Volume: 37 Issue: 1, 326 - 337, 01.03.2024
https://doi.org/10.35378/gujs.1185130

Abstract

Obtaining and storing large amounts of data have become easier with the rapidly developing information technologies (IT). However, the data generated and collected, which are irrelevant in and of themselves, become useful only when they are analyzed for a specific reason. Data mining may transform raw data into useful information. In the present study, classification and analysis of denim fabric quality characteristics according to denim fabric production parameters were carried out. The present study proposes a new classification rule inference algorithm. The suggested approach is mostly based on Artificial Bee Colony Optimization (ABC), a swarm intelligence meta-heuristic. In each step of the algorithm, there are two phases called the employed bee phase and the onlooker bee phase. This algorithm has been compared with the classification algorithms in the related literature. This proposed algorithm is a new data mining tool that intelligently combines various metaheuristic and neural networks and can generate classification rules. The results indicate that the proposed data mining algorithms may be highly useful in determining weight and width in denim fabric manufacture.

Project Number

TEYDEB-1505, 5200006

References

  • [1] Erdem, S., Özdağoğlu, G., “Analyzing of emergency data of a training and research hospital in aegean region using data mining”, Anadolu University Journal of Science and Technology, 9(2): 261-270, (2008).
  • [2] Frawley, W., Piatetsky-Shapiro, G., Maktheus, CW., “Knowledge discovery in databases: an overview”, AI Magazine, 13(3): 213–238, (1992).
  • [3] Han, J., Kamber, M., “Data mining: Concepts and techniques”, San Francisco, CA: Morgan Kaufmann Publishers, (2001).
  • [4] Yildirim, P., Birant, D., Alpyildiz, T., “Data mining and machine learning in textile industry”, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(1): e1228-e1248, (2017).
  • [5] Ozaydin, B., Hardin, J.M., Chhieng, D.C., “Data mining and clinical decision support systems”, Clinical Decision Support Systems, 45–68, (2016).
  • [6] Khedr, A. E., Idrees, A.M., Hegazy, A.E.-F., El-Shewy, S., “A proposed configurable approach for recommendation systems via data mining techniques”, Enterprise Information Systems, 12(2): 196-217, (2017).
  • [7] Stahl, F., Gabrys, B., Gaber, M.M., Berendsen, M., “An overview of interactive visual data mining techniques for knowledge discovery”, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(4): 239–256, (2013).
  • [8] Viloria, A., Acuña, G.C., Alcázar Franco, D.J., Hernández-Palma, H., Fuentes, J.P., Rambal, E.P., “Integration of data mining techniques to postgreSQL database manager system”, Procedia Computer Science, 155: 575–580, (2019).
  • [9] Chang, W., Hongjun, G., Rui, S., Huiling, S., “Technological potential analysis and vacant technology forecasting in the graphene field based on the patent data mining”, Resources Policy, 77 (1): 102636, (2022).
  • [10] Xiang, Q., Lv, Z.J., Yang, J.G., Yin, X.G., “Mining rule of quality control for spinning process with rough set theory”, Applied Mechanics and Materials, 80-81: 1021-1026, (2011).
  • [11] Deng, Z., Wang, L., Wang, X., “An integrated method of feature extraction and objective evaluation of fabric pilling”, The Journal of the Textile Institute, 102(1): 1-13, (2011).
  • [12] Kumar, K.V.N., Ragupathy, U.S., “An intelligent scheme for fault detection in textile web materials”, International Journal of Computer Applications 46(10): 24-29, (2012).
  • [13] Xiang, Q., Lv, Z.J., Yang, J.G., “A novel data mining method on quality control within spinning process”, Applied Mechanics and Materials, 224: 87–92, (2012).
  • [14] Mozafary, V., Payvandy, P., “Application of data mining techniq ue in predicting worsted spun yarn quality”, The Journal of The Textile Institute, 105(1): 100-108, (2013).
  • [15] Pang, KV., Chan, HL., “Data mining-based algorithm for storage location assignment in a randomised warehouse”, International Journal of Production Research, 55(14): 4035-4052, (2017).
  • [16] Mohanty, AK., Bag, A., “Detection and classification of fabric defects in textile using image mining and association rule miner”, International Journal of Electrical, Electronics and Computers (EEC Journal), 2(3): 28-33, (2017).
  • [17] Lizarraga-Morales RA., Correa-Tome FE., Sanchez-Yanez RE., Cepeda-Negrete J., “On the use of binary features in a rule-based approach for defect detection on textiles”, IEEE Access, 7: 18042-18049, (2019).
  • [18] Revathy, G., Gomathi, T., Sathish, E., “A comparative study for fault detection and classification in textile web materials”, Journal of Xi'an University of Architecture & Technology, 12(12), (2020).
  • [19] Das S., Ghosh A., “Rough set-based decision tool for classification of cotton yarn neps”, Journal of The Institution of Engineers (India), 102: 1–10, (2020).
  • [20] Bhuvaneshwarri, I., Tamilarasi, A., “Artificial intelligence and evolutionary computations in engineering systems”, Advances in Intelligent Systems and Computing, 1056: 69-77, (2020).
  • [21] Bhuvaneshwarri, I., Tamilarasi, A., “Predicting the fabric width of single jersey cotton knitted fabric using appropriate software”, Industria Textila, 70(6): 538-546, (2019).
  • [22] Deng, X., Zeng, X., Vroman, P., Koehl, L., “An intelligent multi-criteria optimization method for quick and market-oriented textile material design”, Journal of Global Optimization, 51(2): 227-244, (2010).
  • [23] Fu, Y., Chen, S., Chang, L., “Ant colony algorithm’s application of textile monitoring image recognition”, Advanced Materials Research, 328: 1701-1704, (2011).
  • [24] Zhao, X., Li, D., Yang, B., Ma, C., Zhu, Y., Chen, H., “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton”, Applied Soft Computing, 24: 585-596, (2014).
  • [25] Xue, Z., Zeng, X., Koehl, L., Shen, L., “Development of an intelligent model to predict tactile properties from visual features of textile products”, 2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), (2015).
  • [26] Zhao, X., Liu X., Li, D., Chen, H., Liu, S., Yang, X., Zhan, S., Zhao, W., “Comparative study on metaheuristic-based feature selection for cotton foreign fibers recognition”, International Conference on Computer and Computing Technologies in Agriculture, 8-18, (2015).
  • [27] Amor, N., Noman, MT., Petru, M., Mahmood, A., Ismail, A., “Neural network-crow search model for the prediction of functional properties of nano TiO2 coated cotton composites”, Scientific Reports, 11(1): 13649, (2021).
  • [28] Periyasamy, A.P., Ramamoorthy, S.K., Lavate, S.S., “Eco-friendly denim processing”, Handbook of Ecomaterials, 1559–1579, (2019).
  • [29] Karthik, T., Murugan, R., “Carbon footprint in denim manufacturing”, Sustainability in Denim, 125–159, (2017).
  • [30] Üstündağ, S., “Development of elastic hybrid yarns that can be used in denim fabric production”, Master Thesis, Erciyes University Institute of Science and Technology, Kayseri, (2014).
  • [31] Dirican, A., “Evaluation and comparison of diagnostic test performance”, Cerrahpaşa Medical Journal, 32: 25-30, (2001).
  • [32] Niuniu X., Yuxun, L., “Review of decision trees”, The Third IEEE International Conference on Computer Science and Information Technology, 5: 105-109, (2010).
  • [33] Fan, W., Wang, H., Yu, P.S., Ma, S., “Is random model better? On its accuracy and efficiency”, The Third IEEE International Conference on Data Mining, 51-58, (2003).
  • [34] Duggal, P., Shukla, S., “Prediction of thyroid disorders using advanced machine learning techniques”, 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), 670-675, (2020).
  • [35] Domingos, P., Hulten, G., “Mining high-speed data streams”, Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, 71-80, (2000).
  • [36] Domingos, P., Pazzani, M., “Beyond independence: Conditions for optimality of a simple Bayesian classifier”, Machine Learning, 29: 103-130, (1997).
  • [37] John GH, Langley, P., “Estimating continuous distributions in Bayesian classifiers”, Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (UAI'95): 338-345, (1995).
  • [38] Landwehr, N., Hall, M., Frank, E., “Logistic model trees”, Machine Learning, 59(1): 161-205, (2005).
  • [39] Ron K., “The power of Decision Tables”, European Conference on Machine Learning (ECML), (1995).
  • [40] Ghosh, A., Guha, T., Bhar, R.B., “Identification of handloom and powerloom fabrics using proximal support vector machines”, Indian Journal of Fibre and Textile Research, 40(1): 87-93, (2015).
  • [41] Ertaş, O. G., Zervent Ünal, B., Çelik, N., “Analyzing the effect of the elastane-containing dual-core weft yarn density on the denim fabric performance properties”, The Journal of The Textile Institute, 107(1): 116-126, (2016).
  • [42] Gürkan Ünal, P., Konal, D., “Investigation of the effect of weft yarn parameters on the elasticity and recovery properties of stretch denim fabrics”, Journal of Natural Fibers, 19(13): 7186-7198, (2021).
There are 42 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Industrial Engineering
Authors

Gözde Katırcıoğlu 0000-0003-0748-7301

Emel Kızılkaya Aydogan 0000-0003-0927-6698

Esra Akgul 0000-0002-4468-178X

Yılmaz Delice 0000-0002-4654-0526

Project Number TEYDEB-1505, 5200006
Early Pub Date August 14, 2023
Publication Date March 1, 2024
Published in Issue Year 2024 Volume: 37 Issue: 1

Cite

APA Katırcıoğlu, G., Kızılkaya Aydogan, E., Akgul, E., Delice, Y. (2024). Developed ABCLASS-Miner Classification Algorithm Based Rule Extraction for Denim Fabrics. Gazi University Journal of Science, 37(1), 326-337. https://doi.org/10.35378/gujs.1185130
AMA Katırcıoğlu G, Kızılkaya Aydogan E, Akgul E, Delice Y. Developed ABCLASS-Miner Classification Algorithm Based Rule Extraction for Denim Fabrics. Gazi University Journal of Science. March 2024;37(1):326-337. doi:10.35378/gujs.1185130
Chicago Katırcıoğlu, Gözde, Emel Kızılkaya Aydogan, Esra Akgul, and Yılmaz Delice. “Developed ABCLASS-Miner Classification Algorithm Based Rule Extraction for Denim Fabrics”. Gazi University Journal of Science 37, no. 1 (March 2024): 326-37. https://doi.org/10.35378/gujs.1185130.
EndNote Katırcıoğlu G, Kızılkaya Aydogan E, Akgul E, Delice Y (March 1, 2024) Developed ABCLASS-Miner Classification Algorithm Based Rule Extraction for Denim Fabrics. Gazi University Journal of Science 37 1 326–337.
IEEE G. Katırcıoğlu, E. Kızılkaya Aydogan, E. Akgul, and Y. Delice, “Developed ABCLASS-Miner Classification Algorithm Based Rule Extraction for Denim Fabrics”, Gazi University Journal of Science, vol. 37, no. 1, pp. 326–337, 2024, doi: 10.35378/gujs.1185130.
ISNAD Katırcıoğlu, Gözde et al. “Developed ABCLASS-Miner Classification Algorithm Based Rule Extraction for Denim Fabrics”. Gazi University Journal of Science 37/1 (March 2024), 326-337. https://doi.org/10.35378/gujs.1185130.
JAMA Katırcıoğlu G, Kızılkaya Aydogan E, Akgul E, Delice Y. Developed ABCLASS-Miner Classification Algorithm Based Rule Extraction for Denim Fabrics. Gazi University Journal of Science. 2024;37:326–337.
MLA Katırcıoğlu, Gözde et al. “Developed ABCLASS-Miner Classification Algorithm Based Rule Extraction for Denim Fabrics”. Gazi University Journal of Science, vol. 37, no. 1, 2024, pp. 326-37, doi:10.35378/gujs.1185130.
Vancouver Katırcıoğlu G, Kızılkaya Aydogan E, Akgul E, Delice Y. Developed ABCLASS-Miner Classification Algorithm Based Rule Extraction for Denim Fabrics. Gazi University Journal of Science. 2024;37(1):326-37.