Research Article
BibTex RIS Cite

Adsorptive Sequestration of Methylene Blue Dye from Aqueous Solution Using Novel Roystonea regia fruit Pericarp: Isotherm, Kinetics, and Thermodynamics

Year 2024, Volume: 37 Issue: 2, 813 - 838, 01.06.2024
https://doi.org/10.35378/gujs.1218734

Abstract

The batch adsorptive sequestration of methylene blue from an aqueous solution using unripe Roystonea regia fruit pericarp biomass was investigated in this study. The characteristic nature of the biosorbent was studied using various analytical instruments including Fourier Transform Infra-red spectrophotometer, Scanning Electron Microscope, Energy Dispersive X-ray, X-ray diffractometer, and the Brunauer-Emmett Teller. The adsorption study was perfomed at different experimental conditions including pH, contact time, initial dye concentration, temperature, agitation speed, and biosobent dose. From the results of this study, the optimum biosorption of MB was achieved at 120 min contact time, pH 10, room temperature (298 K), 150 rpm agitation speed and dosage of 100 mg/150 mL dye solution. With 132.30 mgg-1 maximum sorption capacity, the Langmuir isotherm best describes the biosorption equilibrium data. At all initial concentrations, the biosorption kinetics of methylene blue onto the biosorbent fitted best to the pseudo-second order kinetics model, with R2 values ≥ 0.999 and qcal being similar to the qexp. The kinetics study also showed the involvement of intra-particle diffusion in the rate-determining step; although not as the sole limiting step of the sorption process. The results of the thermodynamics study showed the high feasibility, spontaneity, and exothermic nature of the biosorption of methylene blue onto the biosorbent. This study concludes that Roystnea regia fruit pericarp would make an economically viable and renewable biosorbent for practical eco-friendly sequestration of MB dye from wastewaters.

References

  • [1] Tekin, B., Acikel, U., “Adsorption Isotherms for Removal of Heavy Metal Ions (Copper and Nickel) from Aqueous Solutions in Single and Binary Adsorption Processes”, Gazi University Journal of Science, 36(2): 495-509, (2023).
  • [2] Pandey, S., Do, J. Y., Kim, J., Kang, M., “Fast and highly efficient removal of dye from aqueous solution using natural locust beangum based hydrogels as adsorbent”, International Journal of Biological Macromolecules, 143: 60–75, (2020).
  • [3] Arica, T. Ayas, A. E., Arica, M. Y., “Magnetic MCM-41 silica particles grafted with poly (glycidylmethacrylate) brush: modification and application for removal of direct dyes”, Micropororous and Mesoporous Materials, 243: 164–175, (2017).
  • [4] Arica, T. A., Kuman, M., Gercel, O., Ayas, E., “Poly (dopamine) grafted bio-silica composite with tetraethylenepentamine ligands for enhanced adsorption of pollutants”, Chemical Engineering Research and Design, 141: 317–327, (2019).
  • [5] Cheng, J., Zhan, C., Wu, J., Cui, Z., Si, J., Wang, Q., Peng, X., Turng, L. S., “Highly Efficient Removal of Methylene Blue Dye from an Aqueous Solution Using Cellulose Acetate Nanofibrous Membranes Modified by Polydopamine”, ACS Omega, 5: 5389–5400, (2020).
  • [6] Anushree, C., Philip, J., “Efficient removal of methylene blue dye using cellulose capped Fe3O4 nano fluids prepared using oxidation-precipitation method”, Colloids and Surfaces A: Physicochemical and Engineering Aspect, 567: 193–204, (2019).
  • [7] Allouche, F. N., Yassaa, N., “Potential adsorption of methylene blue from aqueous solution using green macroalgae Posidoniaoceanica”, In Proceedings of the IOP Conference Series: Materilas Science and Engineering, 323: 24–26, (2017).
  • [8] Rahimian, R., Zarinabadi, S., “A review of studies on the removal of methylene blue dye from industrial wastewater using activated carbon adsorbents made from almond bark”, Progress in Chemical and Biochemical Research, 3(3): 251-268, (2020).
  • [9] Ahmad, R., Kumar, R., “Adsorption studies of hazardous malachite green onto treated ginger waste”, Journal of Environmental Management, 91(4): 1032–1038, (2010).
  • [10] Nwodika, C., Onukwuli, O. D., “Adsorption Study of Kinetics and Equilibrium of Basic Dye on Kola Nut Pod Carbon”, Gazi University Journal of Science, 30(4): 86-102, (2017).
  • [11] Ekrem, G., Mehmet, K., Medine, G., Gokce, K., Volkan, Y., Dilfuza, E., Burak, A., “Bioremoval of methylene blue from aqueous solutions by Syringa vulgaris L. hull biomass”, Environmental Sustainability, 3: 303–312, (2020).
  • [12] Goyal, N., Bulasara, V. K., Barman, S., “Removal of emerging contaminants daidzein and coumestrol from water by nanozeolite beta modified with tetra substituted ammonium cation”, Journal of Hazardous Materials, 344, 417–430, (2018).
  • [13] Koyuncu, H., Kul, A. R., “Removal of methylene blue dye from aqueous solution by nonliving lichen (Pseudevernia furfuracea (L.) Zopf.), as a novel biosorbent”, Applied Water Science, 10(72): 1-14, (2020).
  • [14] Koyuncu, H., Kul, A. R., “Removal of aniline from aqueous solution by activated kaolinite: kinetic, equilibrium and thermodynamic studies”, Colloids and Surfaces A: Physicochemical and Engineering Aspect, 569: 59–66, (2019).
  • [15] Sivalingam, S., Kella, T., Maharana, M., Sen, S., “Efficient sono-sorptive elimination of methylene blue by fly ash-derived nano-zeolite X: process optimization, isotherm and kinetic studies”, Journal of Cleaner Production, 208: 1241–1254, (2019).
  • [16] Youcefi, D., Fernane, F., Hadj ziane, A., Messara, Y., “The kinetics and equilibrium sorption of methylene blue on plant residues in aqueous solution”, Euro-Mediterranean Journal of Environmental Integration, 6(59): 1-9, (2021).
  • [17] Sulaiman, N. S., Mohamad, A. M. H., Danish, M., Sulaiman, O., Hashim, R., “Kinetics, Thermodynamics, and Isotherms of Methylene Blue Adsorption Study onto Cassava Stem Activated Carbon”, Water, 13: 29-36, (2021).
  • [18] Uddin, M. K., Nasar, A., “Walnut shell powder as a low-cost adsorbent for methylene blue dye: isotherm, kinetics, thermodynamic, desorption and response surface methodology examinations”, Scientific Reports, 10: 1-12, (2020).
  • [19] Georgin, J., Franco, D. S. P., Netto, M. S., Allasia, D., Oliveira, M. L. S., Dotto, G. L., “Treatment of water containing methylene by biosorption using Brazilian berry seeds (Eugenia uniflora)”, Environmental Science and Pollution Research, 27(17): 20831-20843, (2020).
  • [20] Choi, H. J., Yu, S. W., “Biosorption of methylene blue from aqueous solution by agricultural bioadsorbent corncob”, Environmental Engineering Research, 24: 99-106, (2019).
  • [21] Germplasm Resources Information Network (GRIN). Agricultural Research Service (ARS), United States Department of Agriculture (USDA). Retrieved 6 May 2021.
  • [22] Raymundo, A. S., Zanarotto, R., Belisano, M., Pereira, M. G., Ribeiro, J. N., Ribeiro, A., “Evaluation of sugarcane bagasse as bioadsorbent in the textile wastewater treatment contaminated with Carcinogenic Congo red dye. Brazilian Archive of Biology and Technology, 53(4): 931-938, (2010).
  • [23] Mashkoor, F., Nasar, A., “Polyaniline/Tectona grandis sawdust: a novel composite for efficient decontamination of synthetically polluted water containing crystal violet dye”, Groundwater for Sustainable Development, 8: 390–401, (2019).
  • [24] Odiyo, J. O., Edokpayi, J. N., “Physico-Chemical and Surface Characterisation of a Renewable Low-Cost Biosorbent for the Uptake of Heavy Metal Ions from Aqueous Solution”, Water Pollution, 14: 317- 327, (2018).
  • [25] Association of Official Analytical Chemists, (AOAC), Official Methods of Analysis 18th Edn. Washington DC, (2010).
  • [26] Han, R., Zhang, J., Han, P., Wang, Y., Zhao, Z. Tang, M., “Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite”, Chemical Engineerig Journal, 145(3): 496–504, (2009).
  • [27] Parlayici. S., “Alginate-coated perlite beads for the efficient removal of methylene blue, malachite green, and methyl violet from aqueous solutions: kinetic, thermodynamic, and equilibrium studies”, Journal of Analytical Science and Technology, 10(4): 1-15, (2019).
  • [28] Baraka, A., “Investigation of temperature effect on surface-interaction and diffusion of aqueous-solutiom/porous-solid adsorption systems using diffusion-binding model”, Journal of Environmental Chemical Engineering, 3: 129-139, (2015).
  • [29] Corda, N. C., Kini, M. S., “A review on adsorption of cationic dyes using activated carbon”, MATEC Web of Conferences, vol. 144, (2018).
  • [30] Tran, H. N., You, S. J., Hosseini-Bandegharaei, A., Chao, H. P., “Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review”, Water Research, 120: 88–116, (2017).
  • [31] Salh, D. M., Aziz, B. K., Kaufhold, S., “High Adsorption Efficiency of Topkhana Natural Clay for Methylene Blue from Medical Laboratory Wastewater: a Linear and Nonlinear Regression”, Silicon, 12: 87–99, (2019).
  • [32] Madrakian, T., Afkhami A., Ahmadi, M., Bagheri, H., “Removal of some cationic dyes from aqueous solutions using magnetic modified multi-walled carbon nanotubes”, Journal of Hazardous. Materials, 196: 109–114, (2011).
  • [33] Boparai, H. K., Joseph, M., O’Carroll, D. M., “Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles”, Journal of Hazardous Materials, 86(1): 458-465, (2011).
  • [34] Vijayaraghan, K., Padmesh, T. V. N., Palanivelu, K., Velan, M., “Biosorption of Nickel (II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models”, Journal of Hazardous Materials, 133(3): 304-308, (2006).
  • [35] Hannachi, Y., Hafidh, A., “Biosorption potential of Sargassum muticum algal biomass for methylene blue and lead removal from aqueous medium”, International Journal of Environmental Science and Technology, 17: 3875–3890, (2020).
  • [36] Ayawei, N., Angaye, S. S., Wankasi, D., Dikio, E. D., “Synthesis, characterization and application of Mg/Al layered double hydroxide for the degradation of Congo red in aqueous solution”, Open Journal of Physical Chemistry, 5(3): 56-70, (2015).
  • [37] Ayawei, N., Ebelegi, A. N., Wankasi, D., “Modelling and Interpretation of Adsorption Isotherms”, Journal of Chemistry, 2017: 1-11, (2017).
  • [38] Jemima, W. S., Magesan, P., Chiranjeevi, P., Umapathy, M. J., “Sorption properties of Organo modified montmorillonite clay for the reclamation of chromium (VI) from waste water”, Silicon, 11: 925–933, (2018).
  • [39] Ayub, A., Raza, Z. A., Majeed, M. I., Tariq, M. R., Irfan A., “Development of sustainable magnetic chitosan biosorbent beads for kinetic remediation of arsenic-contaminated water”, International Journal of Biological Macromolecules, 163: 603-617, (2020).
  • [40] Adigun, O. A., Oninla, V. O., Babarinde N. A. A., “Application of sugarcane leaves as biomass in the removal of Cadmium(II), lead(II) and zinc(II) ions from polluted water”, International Journal of Energy and Water Resources, 3: 141–152, (2019).
  • [41] Liu, J., Liu, X., Sun, Y., Sun, C., Liu, H., Stevens, L. A. et al, “High density and super ultra-microporous-activated carbon macrospheres with high volumetric capacity for CO2 capture”, Advanced Sustainable Systems, 2(2): 1-8, (2018).
  • [42] Afroze, S., Sen, T. K., Ang, M., Nishioka. H., “Adsorption of methylene blue dye from aqueous solution by novel biomass Eucalyptus sheathiana bark: equilibrium, kinetics, thermodynamics and mechanism”, Desalination and Water Treatment, 57(13): 5858-5878, (2016).
  • [43] Le, P. T., Bui, H. T., Le, D. N., Nguyen, T. H., Pham, L. A., Nguyen, H. N., Nguyen, Q. S., Nguyen, T. P., Bich, N. T., Duong, T. T., Herrmann, M., Ouillon, S., Le, T. P. Q., “Preparation and Characterization of Biochar Derived from Agricultural By-Products for Dye Removal”, Adsorption Science and Technology, 2021: 1-14, (2021).
  • [44] Xiaoguang, Z., Ying, C. “Adsorption of Methylene blue using FeCl3-modified Pomelo Peel”, Russian Journal of Physical Chemistry A., 94(4): 835–845, (2020).
  • [45] Sivarajasekar, N., Baskar, R., Ragu, T., Sarika, K., Preethi, N., Radhika, T., “Biosorption studies on waste cotton seed for cationic dyes sequestration: equilibrium and thermodynamics”, Applied Water Science, 7(4): 1987–1995, (2016).
  • [46] Patriota, S. N., Francisco, W., Araujo, D. F., Mulholland, D. S., “Adsorption of copper and methylene blue on an agrowaste of Mauritia flexuosa”, Journal of Environmental Engineering, 146(6): 1-11, (2020).
  • [47] Sen, T. K., Afroze, S., Ang, H. M., “Equilibrium, Kinetics and Mechanism of Removal of Methylene Blue from Aqueous Solution by Adsorption onto Pine Cone Biomass of Pinus radiate”, Water Air and Soil Pollution, 218: 499-515, (2011).
  • [48] Jawada, A. H., Abdulhameed, A. S., “Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study”, Surfaces and Interfaces, 18: 1-7, (2020).
  • [49] Najim, A. A., Ahmed, A. M., “Biosorption of Methylene Blue from Aqueous Solution Using Mixed Algae”, Iraqi Journal of Chemical and Petroleum Engineering, 19(4): 1-11, (2018).
  • [50] Kebede, T. G., Mengistie, A. A., Dube, S., Nkambule, T. T. I., Nindi, M. M., “Study on adsorption of some common metal ions present in industrial effluents by Moringa stenopetala seed powder”, Journal of Environmental Chemical Engineering, 6: 1378–1389, (2018).
  • [51] Hernandes, P. T., Oliveira, M. L. S., Georgin, J., Franco, D. S. P., Allasia, D., Dotto, G. L., “Adsorptive decontamination of wastewater containing methylene blue dye using golden trumpet tree bark (Handroanthus albus)”, Environmental Science and Pollution Research, 26: 31924–31933, (2019).
  • [52] Georgin, J., Franco, D. S. P., Grassi, P., Tonato, D., Piccilli, D. G. A., Meili, L., Dotto, G. L., “Potential of Cedrella fissilis bark as an adsorbent for the removal of red 97 dye from aqueous effluents”, Environmental Science and Pollution Research, 26: 19207–19219, (2019).
  • [53] Jegede, M. M., Durowoju, O. S., Edokpay, J. N., “Sequestration of Hazardous Dyes from Aqueous Solution Using Raw and Modified Agricultural Waste”, Adsorption Science and Technology, 2021: 1-21, (2021).
  • [54] Mashkoor, F., Nasar, A., “Magnetized Tectona grandis sawdust as a novel adsorbent: preparation, characterization, and utilization for the removal of methylene blue from aqueous solution”, Cellulose, 27(5): 2613-2635, (2020).
  • [55] Lawagon, C. P., Amon, R. E. C., “Magnetic rice husk ash 'cleanser' as efficient methylene blue adsorbent”, Environmental Engineering Research, 25(5): 685-692, (2020).
  • [56] Ji, B., Zhu, L., Song, H., Chen, W., Guo, S. and Chen, F., “Adsorption of Methylene Blue onto Novel Biochars Prepared from Magnolia grandiflora Linn Fallen Leaves at Three Pyrolysis Temperatures”, Water Air and Soil Pollution, 230(12): 281-292, (2019).
  • [57] Ahmed, M., Mashkoor, F., Nasar, A., “Development, characterization, and utilization of magnetized orange peel waste as a novel adsorbent for the confiscation of crystal violet dye from aqueous solution”, Groundwater for Sustainable Development, 10: 1-10, (2020).
  • [58] Chen, Y., Wang, F., Duan, L., Yang, H., Gao, J., “Tetracycline adsorption onto rice husk ash, an agricultural waste: its kinetic and thermodynamic studies”, Journal of Molecular Liquids, 222: 487-494, (2016).
  • [59] Alshekhli, A. F., Hasan, H. A., Muhamad, M. H., Abdullah, S. R. S., “Development of adsorbent from phytoremediation plant waste for methylene blue removal”, Journal of Ecological Engineering, 21(8): 207–215, (2020).
  • [60] Adeyemi, O. A., Ifebajo, A. O., “Highly efficient magnetic chicken bone biochar for removal of tetracycline and fluorescent dye from wastewater: Two-stage adsorbent analysis”, Journal of Environmental Management, 209: 9-16, (2018).
  • [61] Hossain, M. A., Ngo, H. H., Guo, W. S., Setiadi, T., “Adsorption and desorption of copper (II) ions onto garden grass”, Bioresource Technology, 121: 386-395, (2012).
  • [62] Khodaie, M., Ghasemi, N., Moradi, B., Rahimi, M., “Removal of Methylene Blue from wastewater by Adsorption onto ZnCl2 Activated corn husk Carbon Equilibrium studies”, Journal of Chemistry, 2013: 1-6, (2013).
  • [63] Sadaf, S, Bhatti, H. N., “Batch and fixed bed column studies for the removal of Indosol Yellow BG dye by peanut husk”, Journal of the Taiwan Institute of Chemical Engineering, 45: 541–553, (2014).
  • [64] De-Castro, M. L.A., Abad, M. L. B., Sumalinog, D. A. G., Abarca, R. R. M., Paoprasert, P. deLuna, M. D. G., “Adsorption of Methylene Blue dye and Cu (II) ions on EDTA-modified bentonite: Isotherm, kinetic and thermodynamic studies”, Sustainable Environment Research, 28(5): 197-205, (2018).
  • [65] Laura, C. P., Catalina, G., Juan, A. T., José, G. C., “Removal of a Textile Azo-Dye (Basic Red 46) in Water by Efficient Adsorption on a Natural Clay”, Water Air and Soil Pollution, 232, 4., (2021).
  • [66] M. Elhadj, A. Samira, T. Mohamed, F. Djawad, A. Asma, N. Djamel, “Removal of Basic Red 46 dye from aqueous solution by adsorption and photocatalysis: equilibrium, isotherms, kinetics, and thermodynamic studies”, Separation Science and Technology, 55: 867–885, (2020).
  • [67] Viswanthan, S. P., Neelamury, S. P., Parakkuzhiyi, S., Njazhakunnathu, G. V., Sebastian, A., Padmakumar B., Ambatt,, T. P., “Removal efficiency of methylene blue from aqueous medium using biochar derived from Phragmites karka, a highly invasive wetland weed” Biomass Conversion and Biorefinery, 43:1-17, (2020).
  • [68] Xu, Y., Liu, Y., Liu, S., Tan, X., Zeng, G., Zeng, W., Zheng, B., “Enhanced adsorption of methylene blue by citric acid modification of biochar derived from water hyacinth (Eichornia crassipes)”, Environmental Science and Pollution Research, 23(23): 23606–23618, (2016).
  • [69] Nazir, R., Khan, M., Rehman, R., Shujah, S., Khan, M., Ullah, M., Zada, A., Mahmood, N., Ahmad, I. “Adsorption of selected azo dyes from an aqueous solution by activated carbon derived from Monotheca buxifolia waste seeds”, Soil and Water Research, 15(3): 166–172, (2020).
  • [70] Mahmoud, M. E., Nabil, G. M., El-Mallah, N. M., Bassiouny, H. I., Kumar, S., Abdel-Fattah, T. M., “Kinetics, isotherm, and thermodynamic studies of the adsorption of reactive red 195 A dye from water by modified Switchgrass Biochar adsorbent”, Journal of Industrial and Engineering Chemistry, 37: 156–167, (2016).
  • [71] Praisy, T., Saswati, C., “Adsorption kinetics and equilibrium studies for removal of acid azo dyes by aniline formaldehyde condensate” Applied Water Science, 7: 3661-3671, (2017).
  • [72] Khasri, A., Bello, O. S., Ahmad, M. A., “Mesoporous activated carbon from Pentace species sawdust via microwave-induced KOH activation: optimization and methylene blue adsorption”, Research on Chemical Intermediates, 10: 5737-5757, (2018).
  • [73] Singh, R., Singh, T. S., Odiyo, J. O., Smith, J. A., Edokpayi, J. N., “Evaluation of methylene blue sorption onto low-cost biosorbents: equilibrium, kinetics, and thermodynamics”, Journal of Chemistry, 2020: 1-11, (2020).
  • [74] Hmeid, H. A. Akodad, M. Baghour, M. Moumen, A. Skalli, A. Azizi, G. Anjjar, A. Aalaoul, M. Daoudi, L., “Adsorption of a basic dye, Methylene Blue, in aqueous solution on bentonite”, Moroccan Journal of Chemistry, 9(3): 416–433, (2021).
  • [75] Tang, R., Dai, C., Li, C., Liu, W., Gao, S., Wang, C., “Removal of Methylene Blue from Aqueous Solution Using Agricultural Residue Walnut Shell: Equilibrium, Kinetic, and Thermodynamic Studies”, Journal of Chemistry, 2017: 1-10, (2017).
  • [76] Novera, T. M., Tabassum, M., Bardhan, M., Islam, M. A., Islam, M. A., “Chemical modification of betel nut husk prepared by sodium hydroxide for methylene blue adsorption”, Applied Water Science, 11(66): 1-14, (2021).
  • [77] Wong, S., Hasnaa, H., Ngadi, N., Mohamed, N. B., Hassan, O., Mat, R., Amin, N. A. S., “Adsorption of anionic dyes on spent tea leaves modified with polyethyleneimine (PEI-STL)”, Journal of Cleaner Production, 26: 394–406, (2019).
  • [78] Mullerova, S., Eva, B., Jitka, P., Kristyna, P., Ivo, S., “Magnetically modified macroalgae Cymopolia barbata biomass as an adsorbent for safranin O removal”, Materials Chemistry and Physics, 225: 174–180, (2019).
  • [79] Zhang, Y., Liu, J., Du, X., Shao, W., “Preparation of reusable glass hollow fiber membranes and methylene blue adsorption”, Journal of the European Ceramic Society, 39: 4891–4900, (2019).
  • [80] Liu, S., Li, J., Xu, S., Wang, M., Zhang, Y., Xue, X.A., “Modified method for enhancing adsorption capability of banana pseudostem biochar towards methylene blue at low temperature”, Bioresource Technology, 282: 48–55, (2019).
  • [81] Meili, L., Lins, P. V. S., Costa, M.T., Almeida, R. L., Abud, A. K. S., Soletti, J. I., Erto, A., “Adsorption of methylene blue on agroindustrial wastes: experimental investigation and phenomenological modelling”, Progress in Biophysics and Molecular Biology, 141: 60–71, (2019).
  • [82] Sebeia, N., Jabli, M., Ghith, A., Elghoul, Y., Alminderej, F. M., “Production of cellulose from Aegagropila Linnaei macro-algae: Chemical modification, characterization and application for the bio-sorption of cationic and anionic dyes from water”, International Journal of Biological Macromolecules, 135: 152–162, (2019).
  • [83] Enenebeaku, C. K. Okorocha, N. J., Enenebeaku, U. E., Onyeachu, B. I., “Adsorption of methylene blue dye onto bush cane bark powder”, International Letters of Chemistry Physics and Astronomy, 76: 12–26, (2017).
  • [84] Islam, M.A., Sabar, S., Benhouria, A., Khanday, W.A., Asif, M., Hameed, B.H., “Nanoporous activated carbon prepared from karanj (Pongamia pinnata) fruit hulls for methylene blue adsorption”, Journal of the Taiwan Institute of Chemical Engineering, 74: 96-104, (2017).
  • [85] Pacurariu, C., Paska, O., Ianos, R., Muntean, S. G., “Effective removal of methylene blue from aqueous solution using a new magnetic iron oxide nanosorbent prepared by combustion synthesis”, Cleaner Technologies and Environmental Policy, 18: 705–715, (2016).
Year 2024, Volume: 37 Issue: 2, 813 - 838, 01.06.2024
https://doi.org/10.35378/gujs.1218734

Abstract

References

  • [1] Tekin, B., Acikel, U., “Adsorption Isotherms for Removal of Heavy Metal Ions (Copper and Nickel) from Aqueous Solutions in Single and Binary Adsorption Processes”, Gazi University Journal of Science, 36(2): 495-509, (2023).
  • [2] Pandey, S., Do, J. Y., Kim, J., Kang, M., “Fast and highly efficient removal of dye from aqueous solution using natural locust beangum based hydrogels as adsorbent”, International Journal of Biological Macromolecules, 143: 60–75, (2020).
  • [3] Arica, T. Ayas, A. E., Arica, M. Y., “Magnetic MCM-41 silica particles grafted with poly (glycidylmethacrylate) brush: modification and application for removal of direct dyes”, Micropororous and Mesoporous Materials, 243: 164–175, (2017).
  • [4] Arica, T. A., Kuman, M., Gercel, O., Ayas, E., “Poly (dopamine) grafted bio-silica composite with tetraethylenepentamine ligands for enhanced adsorption of pollutants”, Chemical Engineering Research and Design, 141: 317–327, (2019).
  • [5] Cheng, J., Zhan, C., Wu, J., Cui, Z., Si, J., Wang, Q., Peng, X., Turng, L. S., “Highly Efficient Removal of Methylene Blue Dye from an Aqueous Solution Using Cellulose Acetate Nanofibrous Membranes Modified by Polydopamine”, ACS Omega, 5: 5389–5400, (2020).
  • [6] Anushree, C., Philip, J., “Efficient removal of methylene blue dye using cellulose capped Fe3O4 nano fluids prepared using oxidation-precipitation method”, Colloids and Surfaces A: Physicochemical and Engineering Aspect, 567: 193–204, (2019).
  • [7] Allouche, F. N., Yassaa, N., “Potential adsorption of methylene blue from aqueous solution using green macroalgae Posidoniaoceanica”, In Proceedings of the IOP Conference Series: Materilas Science and Engineering, 323: 24–26, (2017).
  • [8] Rahimian, R., Zarinabadi, S., “A review of studies on the removal of methylene blue dye from industrial wastewater using activated carbon adsorbents made from almond bark”, Progress in Chemical and Biochemical Research, 3(3): 251-268, (2020).
  • [9] Ahmad, R., Kumar, R., “Adsorption studies of hazardous malachite green onto treated ginger waste”, Journal of Environmental Management, 91(4): 1032–1038, (2010).
  • [10] Nwodika, C., Onukwuli, O. D., “Adsorption Study of Kinetics and Equilibrium of Basic Dye on Kola Nut Pod Carbon”, Gazi University Journal of Science, 30(4): 86-102, (2017).
  • [11] Ekrem, G., Mehmet, K., Medine, G., Gokce, K., Volkan, Y., Dilfuza, E., Burak, A., “Bioremoval of methylene blue from aqueous solutions by Syringa vulgaris L. hull biomass”, Environmental Sustainability, 3: 303–312, (2020).
  • [12] Goyal, N., Bulasara, V. K., Barman, S., “Removal of emerging contaminants daidzein and coumestrol from water by nanozeolite beta modified with tetra substituted ammonium cation”, Journal of Hazardous Materials, 344, 417–430, (2018).
  • [13] Koyuncu, H., Kul, A. R., “Removal of methylene blue dye from aqueous solution by nonliving lichen (Pseudevernia furfuracea (L.) Zopf.), as a novel biosorbent”, Applied Water Science, 10(72): 1-14, (2020).
  • [14] Koyuncu, H., Kul, A. R., “Removal of aniline from aqueous solution by activated kaolinite: kinetic, equilibrium and thermodynamic studies”, Colloids and Surfaces A: Physicochemical and Engineering Aspect, 569: 59–66, (2019).
  • [15] Sivalingam, S., Kella, T., Maharana, M., Sen, S., “Efficient sono-sorptive elimination of methylene blue by fly ash-derived nano-zeolite X: process optimization, isotherm and kinetic studies”, Journal of Cleaner Production, 208: 1241–1254, (2019).
  • [16] Youcefi, D., Fernane, F., Hadj ziane, A., Messara, Y., “The kinetics and equilibrium sorption of methylene blue on plant residues in aqueous solution”, Euro-Mediterranean Journal of Environmental Integration, 6(59): 1-9, (2021).
  • [17] Sulaiman, N. S., Mohamad, A. M. H., Danish, M., Sulaiman, O., Hashim, R., “Kinetics, Thermodynamics, and Isotherms of Methylene Blue Adsorption Study onto Cassava Stem Activated Carbon”, Water, 13: 29-36, (2021).
  • [18] Uddin, M. K., Nasar, A., “Walnut shell powder as a low-cost adsorbent for methylene blue dye: isotherm, kinetics, thermodynamic, desorption and response surface methodology examinations”, Scientific Reports, 10: 1-12, (2020).
  • [19] Georgin, J., Franco, D. S. P., Netto, M. S., Allasia, D., Oliveira, M. L. S., Dotto, G. L., “Treatment of water containing methylene by biosorption using Brazilian berry seeds (Eugenia uniflora)”, Environmental Science and Pollution Research, 27(17): 20831-20843, (2020).
  • [20] Choi, H. J., Yu, S. W., “Biosorption of methylene blue from aqueous solution by agricultural bioadsorbent corncob”, Environmental Engineering Research, 24: 99-106, (2019).
  • [21] Germplasm Resources Information Network (GRIN). Agricultural Research Service (ARS), United States Department of Agriculture (USDA). Retrieved 6 May 2021.
  • [22] Raymundo, A. S., Zanarotto, R., Belisano, M., Pereira, M. G., Ribeiro, J. N., Ribeiro, A., “Evaluation of sugarcane bagasse as bioadsorbent in the textile wastewater treatment contaminated with Carcinogenic Congo red dye. Brazilian Archive of Biology and Technology, 53(4): 931-938, (2010).
  • [23] Mashkoor, F., Nasar, A., “Polyaniline/Tectona grandis sawdust: a novel composite for efficient decontamination of synthetically polluted water containing crystal violet dye”, Groundwater for Sustainable Development, 8: 390–401, (2019).
  • [24] Odiyo, J. O., Edokpayi, J. N., “Physico-Chemical and Surface Characterisation of a Renewable Low-Cost Biosorbent for the Uptake of Heavy Metal Ions from Aqueous Solution”, Water Pollution, 14: 317- 327, (2018).
  • [25] Association of Official Analytical Chemists, (AOAC), Official Methods of Analysis 18th Edn. Washington DC, (2010).
  • [26] Han, R., Zhang, J., Han, P., Wang, Y., Zhao, Z. Tang, M., “Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite”, Chemical Engineerig Journal, 145(3): 496–504, (2009).
  • [27] Parlayici. S., “Alginate-coated perlite beads for the efficient removal of methylene blue, malachite green, and methyl violet from aqueous solutions: kinetic, thermodynamic, and equilibrium studies”, Journal of Analytical Science and Technology, 10(4): 1-15, (2019).
  • [28] Baraka, A., “Investigation of temperature effect on surface-interaction and diffusion of aqueous-solutiom/porous-solid adsorption systems using diffusion-binding model”, Journal of Environmental Chemical Engineering, 3: 129-139, (2015).
  • [29] Corda, N. C., Kini, M. S., “A review on adsorption of cationic dyes using activated carbon”, MATEC Web of Conferences, vol. 144, (2018).
  • [30] Tran, H. N., You, S. J., Hosseini-Bandegharaei, A., Chao, H. P., “Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review”, Water Research, 120: 88–116, (2017).
  • [31] Salh, D. M., Aziz, B. K., Kaufhold, S., “High Adsorption Efficiency of Topkhana Natural Clay for Methylene Blue from Medical Laboratory Wastewater: a Linear and Nonlinear Regression”, Silicon, 12: 87–99, (2019).
  • [32] Madrakian, T., Afkhami A., Ahmadi, M., Bagheri, H., “Removal of some cationic dyes from aqueous solutions using magnetic modified multi-walled carbon nanotubes”, Journal of Hazardous. Materials, 196: 109–114, (2011).
  • [33] Boparai, H. K., Joseph, M., O’Carroll, D. M., “Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles”, Journal of Hazardous Materials, 86(1): 458-465, (2011).
  • [34] Vijayaraghan, K., Padmesh, T. V. N., Palanivelu, K., Velan, M., “Biosorption of Nickel (II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models”, Journal of Hazardous Materials, 133(3): 304-308, (2006).
  • [35] Hannachi, Y., Hafidh, A., “Biosorption potential of Sargassum muticum algal biomass for methylene blue and lead removal from aqueous medium”, International Journal of Environmental Science and Technology, 17: 3875–3890, (2020).
  • [36] Ayawei, N., Angaye, S. S., Wankasi, D., Dikio, E. D., “Synthesis, characterization and application of Mg/Al layered double hydroxide for the degradation of Congo red in aqueous solution”, Open Journal of Physical Chemistry, 5(3): 56-70, (2015).
  • [37] Ayawei, N., Ebelegi, A. N., Wankasi, D., “Modelling and Interpretation of Adsorption Isotherms”, Journal of Chemistry, 2017: 1-11, (2017).
  • [38] Jemima, W. S., Magesan, P., Chiranjeevi, P., Umapathy, M. J., “Sorption properties of Organo modified montmorillonite clay for the reclamation of chromium (VI) from waste water”, Silicon, 11: 925–933, (2018).
  • [39] Ayub, A., Raza, Z. A., Majeed, M. I., Tariq, M. R., Irfan A., “Development of sustainable magnetic chitosan biosorbent beads for kinetic remediation of arsenic-contaminated water”, International Journal of Biological Macromolecules, 163: 603-617, (2020).
  • [40] Adigun, O. A., Oninla, V. O., Babarinde N. A. A., “Application of sugarcane leaves as biomass in the removal of Cadmium(II), lead(II) and zinc(II) ions from polluted water”, International Journal of Energy and Water Resources, 3: 141–152, (2019).
  • [41] Liu, J., Liu, X., Sun, Y., Sun, C., Liu, H., Stevens, L. A. et al, “High density and super ultra-microporous-activated carbon macrospheres with high volumetric capacity for CO2 capture”, Advanced Sustainable Systems, 2(2): 1-8, (2018).
  • [42] Afroze, S., Sen, T. K., Ang, M., Nishioka. H., “Adsorption of methylene blue dye from aqueous solution by novel biomass Eucalyptus sheathiana bark: equilibrium, kinetics, thermodynamics and mechanism”, Desalination and Water Treatment, 57(13): 5858-5878, (2016).
  • [43] Le, P. T., Bui, H. T., Le, D. N., Nguyen, T. H., Pham, L. A., Nguyen, H. N., Nguyen, Q. S., Nguyen, T. P., Bich, N. T., Duong, T. T., Herrmann, M., Ouillon, S., Le, T. P. Q., “Preparation and Characterization of Biochar Derived from Agricultural By-Products for Dye Removal”, Adsorption Science and Technology, 2021: 1-14, (2021).
  • [44] Xiaoguang, Z., Ying, C. “Adsorption of Methylene blue using FeCl3-modified Pomelo Peel”, Russian Journal of Physical Chemistry A., 94(4): 835–845, (2020).
  • [45] Sivarajasekar, N., Baskar, R., Ragu, T., Sarika, K., Preethi, N., Radhika, T., “Biosorption studies on waste cotton seed for cationic dyes sequestration: equilibrium and thermodynamics”, Applied Water Science, 7(4): 1987–1995, (2016).
  • [46] Patriota, S. N., Francisco, W., Araujo, D. F., Mulholland, D. S., “Adsorption of copper and methylene blue on an agrowaste of Mauritia flexuosa”, Journal of Environmental Engineering, 146(6): 1-11, (2020).
  • [47] Sen, T. K., Afroze, S., Ang, H. M., “Equilibrium, Kinetics and Mechanism of Removal of Methylene Blue from Aqueous Solution by Adsorption onto Pine Cone Biomass of Pinus radiate”, Water Air and Soil Pollution, 218: 499-515, (2011).
  • [48] Jawada, A. H., Abdulhameed, A. S., “Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study”, Surfaces and Interfaces, 18: 1-7, (2020).
  • [49] Najim, A. A., Ahmed, A. M., “Biosorption of Methylene Blue from Aqueous Solution Using Mixed Algae”, Iraqi Journal of Chemical and Petroleum Engineering, 19(4): 1-11, (2018).
  • [50] Kebede, T. G., Mengistie, A. A., Dube, S., Nkambule, T. T. I., Nindi, M. M., “Study on adsorption of some common metal ions present in industrial effluents by Moringa stenopetala seed powder”, Journal of Environmental Chemical Engineering, 6: 1378–1389, (2018).
  • [51] Hernandes, P. T., Oliveira, M. L. S., Georgin, J., Franco, D. S. P., Allasia, D., Dotto, G. L., “Adsorptive decontamination of wastewater containing methylene blue dye using golden trumpet tree bark (Handroanthus albus)”, Environmental Science and Pollution Research, 26: 31924–31933, (2019).
  • [52] Georgin, J., Franco, D. S. P., Grassi, P., Tonato, D., Piccilli, D. G. A., Meili, L., Dotto, G. L., “Potential of Cedrella fissilis bark as an adsorbent for the removal of red 97 dye from aqueous effluents”, Environmental Science and Pollution Research, 26: 19207–19219, (2019).
  • [53] Jegede, M. M., Durowoju, O. S., Edokpay, J. N., “Sequestration of Hazardous Dyes from Aqueous Solution Using Raw and Modified Agricultural Waste”, Adsorption Science and Technology, 2021: 1-21, (2021).
  • [54] Mashkoor, F., Nasar, A., “Magnetized Tectona grandis sawdust as a novel adsorbent: preparation, characterization, and utilization for the removal of methylene blue from aqueous solution”, Cellulose, 27(5): 2613-2635, (2020).
  • [55] Lawagon, C. P., Amon, R. E. C., “Magnetic rice husk ash 'cleanser' as efficient methylene blue adsorbent”, Environmental Engineering Research, 25(5): 685-692, (2020).
  • [56] Ji, B., Zhu, L., Song, H., Chen, W., Guo, S. and Chen, F., “Adsorption of Methylene Blue onto Novel Biochars Prepared from Magnolia grandiflora Linn Fallen Leaves at Three Pyrolysis Temperatures”, Water Air and Soil Pollution, 230(12): 281-292, (2019).
  • [57] Ahmed, M., Mashkoor, F., Nasar, A., “Development, characterization, and utilization of magnetized orange peel waste as a novel adsorbent for the confiscation of crystal violet dye from aqueous solution”, Groundwater for Sustainable Development, 10: 1-10, (2020).
  • [58] Chen, Y., Wang, F., Duan, L., Yang, H., Gao, J., “Tetracycline adsorption onto rice husk ash, an agricultural waste: its kinetic and thermodynamic studies”, Journal of Molecular Liquids, 222: 487-494, (2016).
  • [59] Alshekhli, A. F., Hasan, H. A., Muhamad, M. H., Abdullah, S. R. S., “Development of adsorbent from phytoremediation plant waste for methylene blue removal”, Journal of Ecological Engineering, 21(8): 207–215, (2020).
  • [60] Adeyemi, O. A., Ifebajo, A. O., “Highly efficient magnetic chicken bone biochar for removal of tetracycline and fluorescent dye from wastewater: Two-stage adsorbent analysis”, Journal of Environmental Management, 209: 9-16, (2018).
  • [61] Hossain, M. A., Ngo, H. H., Guo, W. S., Setiadi, T., “Adsorption and desorption of copper (II) ions onto garden grass”, Bioresource Technology, 121: 386-395, (2012).
  • [62] Khodaie, M., Ghasemi, N., Moradi, B., Rahimi, M., “Removal of Methylene Blue from wastewater by Adsorption onto ZnCl2 Activated corn husk Carbon Equilibrium studies”, Journal of Chemistry, 2013: 1-6, (2013).
  • [63] Sadaf, S, Bhatti, H. N., “Batch and fixed bed column studies for the removal of Indosol Yellow BG dye by peanut husk”, Journal of the Taiwan Institute of Chemical Engineering, 45: 541–553, (2014).
  • [64] De-Castro, M. L.A., Abad, M. L. B., Sumalinog, D. A. G., Abarca, R. R. M., Paoprasert, P. deLuna, M. D. G., “Adsorption of Methylene Blue dye and Cu (II) ions on EDTA-modified bentonite: Isotherm, kinetic and thermodynamic studies”, Sustainable Environment Research, 28(5): 197-205, (2018).
  • [65] Laura, C. P., Catalina, G., Juan, A. T., José, G. C., “Removal of a Textile Azo-Dye (Basic Red 46) in Water by Efficient Adsorption on a Natural Clay”, Water Air and Soil Pollution, 232, 4., (2021).
  • [66] M. Elhadj, A. Samira, T. Mohamed, F. Djawad, A. Asma, N. Djamel, “Removal of Basic Red 46 dye from aqueous solution by adsorption and photocatalysis: equilibrium, isotherms, kinetics, and thermodynamic studies”, Separation Science and Technology, 55: 867–885, (2020).
  • [67] Viswanthan, S. P., Neelamury, S. P., Parakkuzhiyi, S., Njazhakunnathu, G. V., Sebastian, A., Padmakumar B., Ambatt,, T. P., “Removal efficiency of methylene blue from aqueous medium using biochar derived from Phragmites karka, a highly invasive wetland weed” Biomass Conversion and Biorefinery, 43:1-17, (2020).
  • [68] Xu, Y., Liu, Y., Liu, S., Tan, X., Zeng, G., Zeng, W., Zheng, B., “Enhanced adsorption of methylene blue by citric acid modification of biochar derived from water hyacinth (Eichornia crassipes)”, Environmental Science and Pollution Research, 23(23): 23606–23618, (2016).
  • [69] Nazir, R., Khan, M., Rehman, R., Shujah, S., Khan, M., Ullah, M., Zada, A., Mahmood, N., Ahmad, I. “Adsorption of selected azo dyes from an aqueous solution by activated carbon derived from Monotheca buxifolia waste seeds”, Soil and Water Research, 15(3): 166–172, (2020).
  • [70] Mahmoud, M. E., Nabil, G. M., El-Mallah, N. M., Bassiouny, H. I., Kumar, S., Abdel-Fattah, T. M., “Kinetics, isotherm, and thermodynamic studies of the adsorption of reactive red 195 A dye from water by modified Switchgrass Biochar adsorbent”, Journal of Industrial and Engineering Chemistry, 37: 156–167, (2016).
  • [71] Praisy, T., Saswati, C., “Adsorption kinetics and equilibrium studies for removal of acid azo dyes by aniline formaldehyde condensate” Applied Water Science, 7: 3661-3671, (2017).
  • [72] Khasri, A., Bello, O. S., Ahmad, M. A., “Mesoporous activated carbon from Pentace species sawdust via microwave-induced KOH activation: optimization and methylene blue adsorption”, Research on Chemical Intermediates, 10: 5737-5757, (2018).
  • [73] Singh, R., Singh, T. S., Odiyo, J. O., Smith, J. A., Edokpayi, J. N., “Evaluation of methylene blue sorption onto low-cost biosorbents: equilibrium, kinetics, and thermodynamics”, Journal of Chemistry, 2020: 1-11, (2020).
  • [74] Hmeid, H. A. Akodad, M. Baghour, M. Moumen, A. Skalli, A. Azizi, G. Anjjar, A. Aalaoul, M. Daoudi, L., “Adsorption of a basic dye, Methylene Blue, in aqueous solution on bentonite”, Moroccan Journal of Chemistry, 9(3): 416–433, (2021).
  • [75] Tang, R., Dai, C., Li, C., Liu, W., Gao, S., Wang, C., “Removal of Methylene Blue from Aqueous Solution Using Agricultural Residue Walnut Shell: Equilibrium, Kinetic, and Thermodynamic Studies”, Journal of Chemistry, 2017: 1-10, (2017).
  • [76] Novera, T. M., Tabassum, M., Bardhan, M., Islam, M. A., Islam, M. A., “Chemical modification of betel nut husk prepared by sodium hydroxide for methylene blue adsorption”, Applied Water Science, 11(66): 1-14, (2021).
  • [77] Wong, S., Hasnaa, H., Ngadi, N., Mohamed, N. B., Hassan, O., Mat, R., Amin, N. A. S., “Adsorption of anionic dyes on spent tea leaves modified with polyethyleneimine (PEI-STL)”, Journal of Cleaner Production, 26: 394–406, (2019).
  • [78] Mullerova, S., Eva, B., Jitka, P., Kristyna, P., Ivo, S., “Magnetically modified macroalgae Cymopolia barbata biomass as an adsorbent for safranin O removal”, Materials Chemistry and Physics, 225: 174–180, (2019).
  • [79] Zhang, Y., Liu, J., Du, X., Shao, W., “Preparation of reusable glass hollow fiber membranes and methylene blue adsorption”, Journal of the European Ceramic Society, 39: 4891–4900, (2019).
  • [80] Liu, S., Li, J., Xu, S., Wang, M., Zhang, Y., Xue, X.A., “Modified method for enhancing adsorption capability of banana pseudostem biochar towards methylene blue at low temperature”, Bioresource Technology, 282: 48–55, (2019).
  • [81] Meili, L., Lins, P. V. S., Costa, M.T., Almeida, R. L., Abud, A. K. S., Soletti, J. I., Erto, A., “Adsorption of methylene blue on agroindustrial wastes: experimental investigation and phenomenological modelling”, Progress in Biophysics and Molecular Biology, 141: 60–71, (2019).
  • [82] Sebeia, N., Jabli, M., Ghith, A., Elghoul, Y., Alminderej, F. M., “Production of cellulose from Aegagropila Linnaei macro-algae: Chemical modification, characterization and application for the bio-sorption of cationic and anionic dyes from water”, International Journal of Biological Macromolecules, 135: 152–162, (2019).
  • [83] Enenebeaku, C. K. Okorocha, N. J., Enenebeaku, U. E., Onyeachu, B. I., “Adsorption of methylene blue dye onto bush cane bark powder”, International Letters of Chemistry Physics and Astronomy, 76: 12–26, (2017).
  • [84] Islam, M.A., Sabar, S., Benhouria, A., Khanday, W.A., Asif, M., Hameed, B.H., “Nanoporous activated carbon prepared from karanj (Pongamia pinnata) fruit hulls for methylene blue adsorption”, Journal of the Taiwan Institute of Chemical Engineering, 74: 96-104, (2017).
  • [85] Pacurariu, C., Paska, O., Ianos, R., Muntean, S. G., “Effective removal of methylene blue from aqueous solution using a new magnetic iron oxide nanosorbent prepared by combustion synthesis”, Cleaner Technologies and Environmental Policy, 18: 705–715, (2016).
There are 85 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Environmental Science
Authors

Adeola Ibikunle 0000-0001-5131-7057

Temitope Osobamiro 0000-0003-4916-3313

Najeem Babarinde 0000-0003-4783-0258

Feyisara Adaramola 0000-0001-5581-8377

Early Pub Date December 8, 2023
Publication Date June 1, 2024
Published in Issue Year 2024 Volume: 37 Issue: 2

Cite

APA Ibikunle, A., Osobamiro, T., Babarinde, N., Adaramola, F. (2024). Adsorptive Sequestration of Methylene Blue Dye from Aqueous Solution Using Novel Roystonea regia fruit Pericarp: Isotherm, Kinetics, and Thermodynamics. Gazi University Journal of Science, 37(2), 813-838. https://doi.org/10.35378/gujs.1218734
AMA Ibikunle A, Osobamiro T, Babarinde N, Adaramola F. Adsorptive Sequestration of Methylene Blue Dye from Aqueous Solution Using Novel Roystonea regia fruit Pericarp: Isotherm, Kinetics, and Thermodynamics. Gazi University Journal of Science. June 2024;37(2):813-838. doi:10.35378/gujs.1218734
Chicago Ibikunle, Adeola, Temitope Osobamiro, Najeem Babarinde, and Feyisara Adaramola. “Adsorptive Sequestration of Methylene Blue Dye from Aqueous Solution Using Novel Roystonea Regia Fruit Pericarp: Isotherm, Kinetics, and Thermodynamics”. Gazi University Journal of Science 37, no. 2 (June 2024): 813-38. https://doi.org/10.35378/gujs.1218734.
EndNote Ibikunle A, Osobamiro T, Babarinde N, Adaramola F (June 1, 2024) Adsorptive Sequestration of Methylene Blue Dye from Aqueous Solution Using Novel Roystonea regia fruit Pericarp: Isotherm, Kinetics, and Thermodynamics. Gazi University Journal of Science 37 2 813–838.
IEEE A. Ibikunle, T. Osobamiro, N. Babarinde, and F. Adaramola, “Adsorptive Sequestration of Methylene Blue Dye from Aqueous Solution Using Novel Roystonea regia fruit Pericarp: Isotherm, Kinetics, and Thermodynamics”, Gazi University Journal of Science, vol. 37, no. 2, pp. 813–838, 2024, doi: 10.35378/gujs.1218734.
ISNAD Ibikunle, Adeola et al. “Adsorptive Sequestration of Methylene Blue Dye from Aqueous Solution Using Novel Roystonea Regia Fruit Pericarp: Isotherm, Kinetics, and Thermodynamics”. Gazi University Journal of Science 37/2 (June 2024), 813-838. https://doi.org/10.35378/gujs.1218734.
JAMA Ibikunle A, Osobamiro T, Babarinde N, Adaramola F. Adsorptive Sequestration of Methylene Blue Dye from Aqueous Solution Using Novel Roystonea regia fruit Pericarp: Isotherm, Kinetics, and Thermodynamics. Gazi University Journal of Science. 2024;37:813–838.
MLA Ibikunle, Adeola et al. “Adsorptive Sequestration of Methylene Blue Dye from Aqueous Solution Using Novel Roystonea Regia Fruit Pericarp: Isotherm, Kinetics, and Thermodynamics”. Gazi University Journal of Science, vol. 37, no. 2, 2024, pp. 813-38, doi:10.35378/gujs.1218734.
Vancouver Ibikunle A, Osobamiro T, Babarinde N, Adaramola F. Adsorptive Sequestration of Methylene Blue Dye from Aqueous Solution Using Novel Roystonea regia fruit Pericarp: Isotherm, Kinetics, and Thermodynamics. Gazi University Journal of Science. 2024;37(2):813-38.