Araştırma Makalesi
BibTex RIS Kaynak Göster

Sawtooth Signal Generator Using a Carbon-Based Memristor

Yıl 2024, Cilt: 37 Sayı: 3, 1287 - 1298, 01.09.2024
https://doi.org/10.35378/gujs.1159917

Öz

It is possible to use the new electronic circuit element memristor in analog applications. Memristors or memristor emulators have already been applied in analog applications such as amplifiers, filters, oscillators, and chaotic circuits. In literature, it has been recently demonstrated that a memristor-based sawtooth signal generator can be built utilizing a memristor emulator and simulations with various memristor models. Such a sawtooth signal generator needs experimental verification with a memristor. Self-Directed Channel (SDC) Carbon-based Memristors are in the market now. Once, the memristor technology is mature enough, its applications may also follow soon. Any memristor application should be realized with a memristor, not an emulator. Knowm memristor has not been used to design a sawtooth signal generator in the literature previously. The aim of the study is to show that a sawtooth signal generator can be made using a Self-Directed Channel (SDC) Carbon-based Memristor and to examine it experimentally. The performance of this sawtooth signal generator is evaluated. The waveforms of the proposed circuit are also examined by varying its operating frequency. The simulation and experimental results are compared. It has been found that its waveforms can be predicted well up to 350 kHz and its high-frequency behavior is not predicted well above 350 kHz by the memristor model used.

Destekleyen Kurum

Scientific Research Projects Coordination Unit of Tekirdag Namık Kemal University

Proje Numarası

NKUBAP.42.GA.19.206.

Kaynakça

  • [1] Chua, L. O., "Memristor - The Missing Circuit Element", IEEE Transactions on Circuit Theory, 18: 507-519, (1971).
  • [2] Chua, L. O., Kang, S. M., “Memristive devices and systems”, Proceedings of the IEEE, 64(2): 209-23, (1976).
  • [3] Strukov, D. B., Snider, G. S., Stewart, D. R., Williams, R. S., “The missing memristor found”, Nature (London), 453: 80-83, (2008).
  • [4] Williams, S., “How we found the missing memristor”, IEEE Spectrum, 45(12): 28–35, (2008).
  • [5] Kavehei, O., Iqbal, A., Kim, Y.S., Eshraghian, K., Al-Sarawi, S. F., Abbott, D., “The Fourth Element: Characteristics, Modelling, and Electromagnetic Theory of the Memristor”, Proceedings of Royal Society A, 466(2120): 2175-2202, (2010).
  • [6] Mazumder, P., Kang, S. M., Waser, R., “Memristors: devices, models, and applications”, Proceedings of the IEEE, 100(6): 1911-1919, (2012).
  • [7] Hu, S. G., Wu, S. Y., Jia, W. W., Yu, Q., Deng, L. J., Fu, Y. Q., Chen, T. P., “Review of nanostructured resistive switching memristor and its applications”, Nanoscience and Nanotechnology Letters, 6(9): 729-757, (2014).
  • [8] Pershin, Yu V., Martinez-Rincon, J., Di Ventra, M., “Memory circuit elements: from systems to applications”, Journal of Computational and Theoretical Nanoscience, 8(3): 441-448, (2011).
  • [9] Prodromakis, T., “Two centuries of memristors”, In Chaos, CNN, Memristors and Beyond: A Festschrift for Leon Chua with DVD-ROM, composed by Eleonora Bilotta, 508-517, (2013).
  • [10] Pershin, Y. V., Di Ventra, M., “Practical approach to programmable analog circuits with memristors”, IEEE Transactions Circuits and Systems I: Regular Papers, 57(8): 1857–1864, (2010).
  • [11] Toumazou, T. C., “A Review on Memristive Devices and Applications”, 17th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), 934 – 937, (2010).
  • [12] Shin, S., Kim, K., Kang, S. M., “Memristor-based fine resolution programmable resistance and its applications”, in ICCCAS 2009 International Conference on Communications, Circuits and Systems, 948–951, (2009).
  • [13] Vaidyanathan, S., Volos, C. (Eds.)., “Advances in memristors, memristive devices and systems” (Vol. 701). Springer, (2017).
  • [14] Rakitin, V. V., Rusakov, S. G., “Memristor based Oscillators with Controlled Threshold Parameters”, In 2020 European Conference on Circuit Theory and Design (ECCTD), IEEE, 1-4, (2020).
  • [15] Zidan, M. A., Omran, H., Smith, C., Syed, A., Radwan, A. G., Salama, K. N., “A family of memristor‐based reactance‐less oscillators”, International Journal of Circuit Theory and Applications, 42(11): 1103-1122, (2014).
  • [16] El-Naggar, A. M., Fouda, M. E., Madian, A. H., Radwan, A. G., “Reactance-less RM relaxation oscillator using exponential memristor model”, In 2016 28th International Conference on Microelectronics (ICM), IEEE., 361-364, (2016).
  • [17] Rakitin, V. V., Rusakov, S. G., “Operating principles of reactance-less memristor-based oscillators”, Journal of Communications Technology and Electronics, 62(6): 621-625, (2017).
  • [18] Rakitin, V. V., Rusakov, S. G., “Principles of the Functioning of Nonreactive Double Memristor Oscillators”, Journal of Communications Technology and Electronics, 64(6): 622-628, (2019).
  • [19] Bodo, B., Fouda, J. A. E., Mvogo, A., Tagne, S., “Experimental hysteresis in memristor based Duffing oscillator”, Chaos, Solitons & Fractals, 115: 190-195, (2018).
  • [20] Sabarathinam, S., Volos, C. K., Thamilmaran, K., “Implementation and study of the nonlinear dynamics of a memristor-based Duffing oscillator”, Nonlinear Dynamics, 87(1): 37-49, (2017).
  • [21] Varshney, V., Sabarathinam, S., Prasad, A., Thamilmaran, K., “Infinite number of hidden attractors in memristor-based autonomous duffing oscillator”, International Journal of Bifurcation and Chaos, 28(01): 1850013, (2018).
  • [22] Mutlu, R., “Solution of TiO2 memristor-capacitor series circuit excited by a constant voltage source and its application to calculate operation frequency of a programmable TiO2 memristor-capacitor relaxation oscillator”, Turkish Journal of Electrical Engineering & Computer Sciences, 23(5): 1219-1229, (2015).
  • [23] Mosad, A. G., Fouda, M. E., Khatib, M. A., Salama, K. N., Radwan, A. G., “Improved memristor-based relaxation oscillator”, Microelectronics Journal, 44(9): 814-820, (2013).
  • [24] Fouda, M. E., Radwan, A. G., “Power dissipation of memristor-based relaxation oscillators”, Radioengineering, 24(4): 968-973, (2015).
  • [25] Talukdar A, Radwan AG, Salama KN., “Generalized model for memristor-based Wien-family oscillators,” Journal of Microelectronics, 42: 1032–1038, (2011).
  • [26] Bao, H., Wang, N., Wu, H., Song, Z., Bao, B., “Bi-stability in an improved memristor-based third-order Wien-bridge oscillator”, IETE Technical Review, 36(2): 109-116, (2019).
  • [27] Rajagopal, K., Li, C., Nazarimehr, F., Karthikean, A., Duraisamy, P., Jafari, S., “Chaotic dynamics of modified wien bridge oscillator with fractional order memristor”, Radioengineering, 28(1): 165-174, (2019).
  • [28] Wang, N., Bao, B., Jiang, T., Chen, M., Xu, Q., “Parameter-independent dynamical behaviors in memristor-based Wien-bridge oscillator”, Mathematical Problems in Engineering, (2017).
  • [29] Abuelma'atti, M. T., Khalifa, Z. J., “A memristor-based Wien-bridge sinusoidal/chaotic oscillator”, International Journal of Electrical Engineering Education, 53(3): 280-288, (2016).
  • [28] Wey, T. A., Benderli, S., “Amplitude modulator circuit featuring TiO2 memristor with linear dopant drift”, Electronics Letters, 45: 1103 – 1104, (2009).
  • [30] Özgüvenç A., Mutlu R., Karakulak E., “Sawtooth signal generator with a memristor,” 1st International Conference on Engineering Technology and Applied Sciences, (2016).
  • [31] Kurtdemir, A., Mutlu, R., “Modeling and Simulation of a Memristor-Based Sawtooth Signal Generator Using Nonlinear Dopant Drift Memristor Models”, European Journal of Engineering and Applied Sciences, 2(1): 44-57, (2019).
  • [32] Knowm Self Directed Channel Memristors, https://knowm.org/downloads/Knowm_Memristors.pdf Access date: 10.04.2020
  • [33] HP Hynix to Collaborate on Memristor Memory Technology, https://www.informationweek.com/desktop/hp-hynix-to-collaborate-on-memristor-memory-technology/d/d-id/1092114 Access date: 01.04.2020
  • [34] Volos, C., Nistazakis, H., Pham, V. T., Stouboulos, I. “The First Experimental Evidence of Chaos from a Nonlinear Circuit with a Real Memristor”, In 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST) 1-4, IEEE, September, (2020).
  • [35] Adhikari, S. P., Sah, M. P., Kim, H., Chua, L. O., “Three fingerprints of memristor”, IEEE Transactions on Circuits and Systems I: Regular Papers, 60(11): 3008-3021, (2013).
  • [36] Wey, T. A., Jemison, W. D., “Variable gain amplifier circuit using titanium dioxide memristors”, IET Circuits, Devices & Systems, 5: 59–65, (2011).
  • [37] Biolek, Z., Biolek, D., Biolkova, V., “SPICE model of memristor with nonlinear dopant drift”, Radioengineering, 18(2): 210–214, (2009).
  • [38] Dalmış, C., “Examination of polarity-dependent charging and discharging of capacitor circuits containing Carbon and Tungsten based memristors,” Tekirdağ Namık Kemal University, Institute of Natural and Applied Sciences, Master’s Thesis, (2021).
  • [39] Dalmış, C., Mutlu, R., Karakulak, E., “Existence of Capacitive Effects in a Tungsten-Based SDC Memristive System”, Informacije MIDEM, 53(3): (2023).
  • [40] Mutlu, R., Karakulak, E., “A methodology for memristance calculation”, Turkish Journal of Electrical Engineering and Computer Sciences, 22(1): 121-131, (2014).
Yıl 2024, Cilt: 37 Sayı: 3, 1287 - 1298, 01.09.2024
https://doi.org/10.35378/gujs.1159917

Öz

Proje Numarası

NKUBAP.42.GA.19.206.

Kaynakça

  • [1] Chua, L. O., "Memristor - The Missing Circuit Element", IEEE Transactions on Circuit Theory, 18: 507-519, (1971).
  • [2] Chua, L. O., Kang, S. M., “Memristive devices and systems”, Proceedings of the IEEE, 64(2): 209-23, (1976).
  • [3] Strukov, D. B., Snider, G. S., Stewart, D. R., Williams, R. S., “The missing memristor found”, Nature (London), 453: 80-83, (2008).
  • [4] Williams, S., “How we found the missing memristor”, IEEE Spectrum, 45(12): 28–35, (2008).
  • [5] Kavehei, O., Iqbal, A., Kim, Y.S., Eshraghian, K., Al-Sarawi, S. F., Abbott, D., “The Fourth Element: Characteristics, Modelling, and Electromagnetic Theory of the Memristor”, Proceedings of Royal Society A, 466(2120): 2175-2202, (2010).
  • [6] Mazumder, P., Kang, S. M., Waser, R., “Memristors: devices, models, and applications”, Proceedings of the IEEE, 100(6): 1911-1919, (2012).
  • [7] Hu, S. G., Wu, S. Y., Jia, W. W., Yu, Q., Deng, L. J., Fu, Y. Q., Chen, T. P., “Review of nanostructured resistive switching memristor and its applications”, Nanoscience and Nanotechnology Letters, 6(9): 729-757, (2014).
  • [8] Pershin, Yu V., Martinez-Rincon, J., Di Ventra, M., “Memory circuit elements: from systems to applications”, Journal of Computational and Theoretical Nanoscience, 8(3): 441-448, (2011).
  • [9] Prodromakis, T., “Two centuries of memristors”, In Chaos, CNN, Memristors and Beyond: A Festschrift for Leon Chua with DVD-ROM, composed by Eleonora Bilotta, 508-517, (2013).
  • [10] Pershin, Y. V., Di Ventra, M., “Practical approach to programmable analog circuits with memristors”, IEEE Transactions Circuits and Systems I: Regular Papers, 57(8): 1857–1864, (2010).
  • [11] Toumazou, T. C., “A Review on Memristive Devices and Applications”, 17th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), 934 – 937, (2010).
  • [12] Shin, S., Kim, K., Kang, S. M., “Memristor-based fine resolution programmable resistance and its applications”, in ICCCAS 2009 International Conference on Communications, Circuits and Systems, 948–951, (2009).
  • [13] Vaidyanathan, S., Volos, C. (Eds.)., “Advances in memristors, memristive devices and systems” (Vol. 701). Springer, (2017).
  • [14] Rakitin, V. V., Rusakov, S. G., “Memristor based Oscillators with Controlled Threshold Parameters”, In 2020 European Conference on Circuit Theory and Design (ECCTD), IEEE, 1-4, (2020).
  • [15] Zidan, M. A., Omran, H., Smith, C., Syed, A., Radwan, A. G., Salama, K. N., “A family of memristor‐based reactance‐less oscillators”, International Journal of Circuit Theory and Applications, 42(11): 1103-1122, (2014).
  • [16] El-Naggar, A. M., Fouda, M. E., Madian, A. H., Radwan, A. G., “Reactance-less RM relaxation oscillator using exponential memristor model”, In 2016 28th International Conference on Microelectronics (ICM), IEEE., 361-364, (2016).
  • [17] Rakitin, V. V., Rusakov, S. G., “Operating principles of reactance-less memristor-based oscillators”, Journal of Communications Technology and Electronics, 62(6): 621-625, (2017).
  • [18] Rakitin, V. V., Rusakov, S. G., “Principles of the Functioning of Nonreactive Double Memristor Oscillators”, Journal of Communications Technology and Electronics, 64(6): 622-628, (2019).
  • [19] Bodo, B., Fouda, J. A. E., Mvogo, A., Tagne, S., “Experimental hysteresis in memristor based Duffing oscillator”, Chaos, Solitons & Fractals, 115: 190-195, (2018).
  • [20] Sabarathinam, S., Volos, C. K., Thamilmaran, K., “Implementation and study of the nonlinear dynamics of a memristor-based Duffing oscillator”, Nonlinear Dynamics, 87(1): 37-49, (2017).
  • [21] Varshney, V., Sabarathinam, S., Prasad, A., Thamilmaran, K., “Infinite number of hidden attractors in memristor-based autonomous duffing oscillator”, International Journal of Bifurcation and Chaos, 28(01): 1850013, (2018).
  • [22] Mutlu, R., “Solution of TiO2 memristor-capacitor series circuit excited by a constant voltage source and its application to calculate operation frequency of a programmable TiO2 memristor-capacitor relaxation oscillator”, Turkish Journal of Electrical Engineering & Computer Sciences, 23(5): 1219-1229, (2015).
  • [23] Mosad, A. G., Fouda, M. E., Khatib, M. A., Salama, K. N., Radwan, A. G., “Improved memristor-based relaxation oscillator”, Microelectronics Journal, 44(9): 814-820, (2013).
  • [24] Fouda, M. E., Radwan, A. G., “Power dissipation of memristor-based relaxation oscillators”, Radioengineering, 24(4): 968-973, (2015).
  • [25] Talukdar A, Radwan AG, Salama KN., “Generalized model for memristor-based Wien-family oscillators,” Journal of Microelectronics, 42: 1032–1038, (2011).
  • [26] Bao, H., Wang, N., Wu, H., Song, Z., Bao, B., “Bi-stability in an improved memristor-based third-order Wien-bridge oscillator”, IETE Technical Review, 36(2): 109-116, (2019).
  • [27] Rajagopal, K., Li, C., Nazarimehr, F., Karthikean, A., Duraisamy, P., Jafari, S., “Chaotic dynamics of modified wien bridge oscillator with fractional order memristor”, Radioengineering, 28(1): 165-174, (2019).
  • [28] Wang, N., Bao, B., Jiang, T., Chen, M., Xu, Q., “Parameter-independent dynamical behaviors in memristor-based Wien-bridge oscillator”, Mathematical Problems in Engineering, (2017).
  • [29] Abuelma'atti, M. T., Khalifa, Z. J., “A memristor-based Wien-bridge sinusoidal/chaotic oscillator”, International Journal of Electrical Engineering Education, 53(3): 280-288, (2016).
  • [28] Wey, T. A., Benderli, S., “Amplitude modulator circuit featuring TiO2 memristor with linear dopant drift”, Electronics Letters, 45: 1103 – 1104, (2009).
  • [30] Özgüvenç A., Mutlu R., Karakulak E., “Sawtooth signal generator with a memristor,” 1st International Conference on Engineering Technology and Applied Sciences, (2016).
  • [31] Kurtdemir, A., Mutlu, R., “Modeling and Simulation of a Memristor-Based Sawtooth Signal Generator Using Nonlinear Dopant Drift Memristor Models”, European Journal of Engineering and Applied Sciences, 2(1): 44-57, (2019).
  • [32] Knowm Self Directed Channel Memristors, https://knowm.org/downloads/Knowm_Memristors.pdf Access date: 10.04.2020
  • [33] HP Hynix to Collaborate on Memristor Memory Technology, https://www.informationweek.com/desktop/hp-hynix-to-collaborate-on-memristor-memory-technology/d/d-id/1092114 Access date: 01.04.2020
  • [34] Volos, C., Nistazakis, H., Pham, V. T., Stouboulos, I. “The First Experimental Evidence of Chaos from a Nonlinear Circuit with a Real Memristor”, In 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST) 1-4, IEEE, September, (2020).
  • [35] Adhikari, S. P., Sah, M. P., Kim, H., Chua, L. O., “Three fingerprints of memristor”, IEEE Transactions on Circuits and Systems I: Regular Papers, 60(11): 3008-3021, (2013).
  • [36] Wey, T. A., Jemison, W. D., “Variable gain amplifier circuit using titanium dioxide memristors”, IET Circuits, Devices & Systems, 5: 59–65, (2011).
  • [37] Biolek, Z., Biolek, D., Biolkova, V., “SPICE model of memristor with nonlinear dopant drift”, Radioengineering, 18(2): 210–214, (2009).
  • [38] Dalmış, C., “Examination of polarity-dependent charging and discharging of capacitor circuits containing Carbon and Tungsten based memristors,” Tekirdağ Namık Kemal University, Institute of Natural and Applied Sciences, Master’s Thesis, (2021).
  • [39] Dalmış, C., Mutlu, R., Karakulak, E., “Existence of Capacitive Effects in a Tungsten-Based SDC Memristive System”, Informacije MIDEM, 53(3): (2023).
  • [40] Mutlu, R., Karakulak, E., “A methodology for memristance calculation”, Turkish Journal of Electrical Engineering and Computer Sciences, 22(1): 121-131, (2014).
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Electrical & Electronics Engineering
Yazarlar

Ertuğrul Karakulak 0000-0001-5937-2114

Reşat Mutlu 0000-0003-0030-7136

Proje Numarası NKUBAP.42.GA.19.206.
Erken Görünüm Tarihi 25 Ocak 2024
Yayımlanma Tarihi 1 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 37 Sayı: 3

Kaynak Göster

APA Karakulak, E., & Mutlu, R. (2024). Sawtooth Signal Generator Using a Carbon-Based Memristor. Gazi University Journal of Science, 37(3), 1287-1298. https://doi.org/10.35378/gujs.1159917
AMA Karakulak E, Mutlu R. Sawtooth Signal Generator Using a Carbon-Based Memristor. Gazi University Journal of Science. Eylül 2024;37(3):1287-1298. doi:10.35378/gujs.1159917
Chicago Karakulak, Ertuğrul, ve Reşat Mutlu. “Sawtooth Signal Generator Using a Carbon-Based Memristor”. Gazi University Journal of Science 37, sy. 3 (Eylül 2024): 1287-98. https://doi.org/10.35378/gujs.1159917.
EndNote Karakulak E, Mutlu R (01 Eylül 2024) Sawtooth Signal Generator Using a Carbon-Based Memristor. Gazi University Journal of Science 37 3 1287–1298.
IEEE E. Karakulak ve R. Mutlu, “Sawtooth Signal Generator Using a Carbon-Based Memristor”, Gazi University Journal of Science, c. 37, sy. 3, ss. 1287–1298, 2024, doi: 10.35378/gujs.1159917.
ISNAD Karakulak, Ertuğrul - Mutlu, Reşat. “Sawtooth Signal Generator Using a Carbon-Based Memristor”. Gazi University Journal of Science 37/3 (Eylül 2024), 1287-1298. https://doi.org/10.35378/gujs.1159917.
JAMA Karakulak E, Mutlu R. Sawtooth Signal Generator Using a Carbon-Based Memristor. Gazi University Journal of Science. 2024;37:1287–1298.
MLA Karakulak, Ertuğrul ve Reşat Mutlu. “Sawtooth Signal Generator Using a Carbon-Based Memristor”. Gazi University Journal of Science, c. 37, sy. 3, 2024, ss. 1287-98, doi:10.35378/gujs.1159917.
Vancouver Karakulak E, Mutlu R. Sawtooth Signal Generator Using a Carbon-Based Memristor. Gazi University Journal of Science. 2024;37(3):1287-98.