Research Article
BibTex RIS Cite

CoFe2O4-Chitosan and Gold Nanoparticles Based Label-Free Electrochemical Immunosensor for Determination of Leptin

Year 2024, Volume: 37 Issue: 4, 1674 - 1689, 01.12.2024
https://doi.org/10.35378/gujs.1422409

Abstract

Herein, a label-free electrochemical leptin immunosensor was demonstrated. The sensing platform consists of the immobilizing of the anti-leptin antibody on a glassy carbon electrode (GCE) modified with cobalt iron oxide (CoFe2O4) nanoparticles, chitosan (CHI), and gold nanoparticles (AuNPs). A simple and rapid leptin determination was achieved by measuring the change of current response in a redox probe solution before and after the immunocomplex formation. SEM examined the surface morphologies of the prepared electrodes. The electrochemical performance of the leptin immunosensor was commented on via EIS, CV, and DPV. Under optimized circumstances, a linear response was found between the current peaks acquired from DPV and the logarithm concentration of leptin in the range of 1─4000 ng mL-1 with a detection limit (LOD) of 0.1 ng mL-1. The subjected immunosensor demonstrated satisfactory reproducibility.

References

  • [1] Escalante-Aburto, A., Mendoza-Córdova, M.Y., Mahady, G.B., Luna-Vital, D.A. Gutiérrez-Uribe, J.A., and Chuck-Hernández C., “Consumption of dietary anthocyanins and their association with a reduction in obesity biomarkers and the prevention of obesity”, Trends in Food Science and Technology, 140: 104140, (2023).
  • [2] Peng, J., Yin, L., and Wang, X., “Central and peripheral leptin resistance in obesity and improvements of exercise”, Hormones and Behavior, 133: 105006, (2021).
  • [3] Pronk, N.P., Eneli, I., Economos, C.D., Bradley, D., Fassbender, J., Calancie, L., Patawaran, W., and Hovmand, P.S., “Using systems science for strategic planning of obesity prevention and treatment: the roundtable on obesity solutions experience”, Current Problems in Cardiology, 48(8): 101240, (2023). [4] Yadav, R., Swetanshu, and Singh, P., “The molecular mechanism of obesity: The science behind natural exercise yoga and healthy diets in the treatment of obesity”, Cardiology Research and Practice, 49(2): 102345, (2024).
  • [5] Yu, M., Ju, M., Fang, P., and Zhang, Z., “Emerging central and peripheral actions of spexin in feeding behavior, leptin resistance and obesity”, Biochemical Pharmacology, 202: 115121, (2022).
  • [6] Chrysafi, P., Perakakis, N., Farr, O.M., Stefanakis, K., Peradze, N., Sala-Vila, A., and Mantzoros, C.S., “Leptin alters energy intake and fat mass but not energy expenditure in lean subjects”, Nature Communications, 11: 5145, (2020).
  • [7] Vilariño-García, T., Polonio-González, M.L., Pérez-Pérez, A., Ribalta, J., Arrieta, F., Aguilar, M., Obaya, J.C., Gimeno-Orna, J.A., Iglesias, P., Navarro, J., Durán, S., Pedro-Botet, J., and Sánchez-Margalet V., “Role of leptin in obesity, cardiovascular disease, and Type 2 diabetes”, International Journal of Molecular Sciences, 25(4): 2338, (2024).
  • [8] Picó, C., Palou, M., Pomar, C.A., Rodríguez, A.M., and Palou, A., “Leptin as a key regulator of the adipose organ”, Reviews in Endocrine and Metabolic Disorders, 23: 13–30, (2022).
  • [9] Richards, M.P., Poch, S.M., “Quantitative analysis of gene expression by reverse transcription polymerase chain reaction and capillary electrophoresis with laser-induced fluorescence detection”, Molecular Biotechnology, 21: 19–37, (2002). [10] Kling, P., Rønnestad, I., Stefansson, S.O., Murashita, K., Kurokawa, T., and Björnsson, B.T., “A homologous salmonid leptin radioimmunoassay indicates elevated plasma leptin levels during fasting of rainbow trout”, General and Comparative Endocrinology, 162: 307–312, (2009).
  • [11] Akib, R.D., Aminuddin, A., Hamid, F., Prihantono, P., Bahar, B., and Hadju, V., “Leptin levels in children with malnutrition”, Gaceta Sanitaria, 35(2): 278–280, (2021).
  • [12] Sankiewicz, A., Hermanowicz, A., Grycz, A., Łukaszewski, Z., and Gorodkiewicz, E., “An SPR imaging immunosensor for leptin determination in blood plasma”, Analytical Methods, 13: 642–646, (2021).
  • [13] Cai, J., Gou, X., Sun, B., Li, W., Li, D., Liu, J., Hu, F., and Li, Y., “Porous graphene-black phosphorus nanocomposite modified electrode for detection of leptin”, Biosensors Bioelectronics, 137: 88–95, (2019).
  • [14] Naresh, V., Lee, N., “A review on biosensors and recent development of nanostructured materials-enabled biosensors”, Sensors, 21(4): 1109, (2021).
  • [15] Lino, C., Barrias, S., Chaves, R., Adega, F., Martins-Lopes, P., and Fernandes, J.R., “Biosensors as diagnostic tools in clinical applications”, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1877(3): 188726, (2022).
  • [16] Chen, H., Zhang, J., Huang, R., Wang, D., Deng, D., Zhang, Q., and Luo, L., “The applications of electrochemical immunosensors in the detection of disease biomarkers: a review”, Molecules, 28(8): 3605, (2023).
  • [17] Ghasemi, Y., Sadeghi, M., Ehzari, H., and Derakhshankhah, H., “Label-free electrochemical immunosensor based on antibody-immobilized Fe-Cu layered double hydroxide nanosheet as an electrochemical probe for the detection of ultra trace amount of prostate cancer biomarker (PSA)”, Microchemical Journal, 195: 109460, (2023). [18] Sangili, A., Kalyani, T., Chen, S.M., Nanda, A., and Jana, S.K., “Label-free electrochemical immunosensor based on one-step electrochemical deposition of AuNP-RGO nanocomposites for detection of endometriosis marker CA 125”, ACS Applied Bio Materials, 3: 7620–7630, (2020). [19] Wei, S., Xiao, H., Cao, L., and Chen, Z., “A label-free immunosensor based on graphene oxide/Fe3O4/Prussian blue nanocomposites for the electrochemical determination of HBsAg”, Biosensors (Basel), 10: 25, (2020).
  • [20] Andryukov, B.G., Besednova, N.N., Romashko, R. V, Zaporozhets, T.S., and Efimov, T.A. “Label-free biosensors for laboratory-based diagnostics of infections: current achievements and new trends”, Biosensors (Basel) 10(2):11, (2020).
  • [21] Patel, M., Agrawal, M., and Srivastava, A., “Signal amplification strategies in electrochemical biosensors via antibody immobilization and nanomaterial-based transducers”, Materials Advances, 3: 8864-8865, (2022).
  • [22] Al-Amiery, A.A., Fayad, M.A., Abdul Wahhab, H.A., Al-Azzawi, W.K., Mohammed, J.K., and Sh. Majdi, H., “Interfacial engineering for advanced functional materials: surfaces, interfaces, and applications”, Results in Engineering, 22: 102125, (2024).
  • [23] Wang, D., Astruc, D., “Fast-growing field of magnetically recyclable nanocatalysts”, Chemical Reviews, 114: 6949–6985, (2014).
  • [24] Yalcin, B., Ozcelik, S., Icin, K., Senturk, K., Ozcelik, B., and Arda, L., “Structural, optical, magnetic, photocatalytic activity and related biological effects of CoFe2O4 ferrite nanoparticles”, Journal of Materials Science: Materials in Electronics 32: 13068–13080, (2021).
  • [25] Liu, P., Li, C., Zhang, R., Tang, Q., Wei, J., Lu, Y., and Shen, P., “An ultrasensitive electrochemical immunosensor for procalcitonin detection based on the gold nanoparticles-enhanced tyramide signal amplification strategy”, Biosensors and Bioelectronics, 126: 543–550, (2019). [26] Malinowska, I., Ryżyńska, Z., Mrotek, E., Klimczuk, T., and Zielińska-Jurek, A., “Synthesis of CoFe2O4 nanoparticles: the effect of ionic strength, concentration, and precursor type on morphology and magnetic properties”, Journal of Nanomaterials, 2020: 9046219, (2020).
  • [27] Montes-García, V., Squillaci, M.A., Diez-Castellnou, M., Ong, Q.K., Stellacci, F., and Samorì, P., “Chemical sensing with Au and Ag nanoparticles”, Chemical Society Reviews, 50: 1269–1304, (2021).
  • [28] Wu, B., Yeasmin, S., Liu, Y., and Cheng, L.-J., Sensitive and selective electrochemical sensor for serotonin detection based on ferrocene-gold nanoparticles decorated multiwall carbon nanotubes”, Sensors and Actuators B: Chemical, 354: 131216, (2022).
  • [29] Pellis, A., Guebitz, G.M., and Nyanhongo, G.S., “Chitosan: sources, processing and modification techniques”, Gels, 8(7): 393, (2022).
  • [30] Román-Doval, R., Torres-Arellanes, S.P., Tenorio-Barajas, A.Y., Gómez-Sánchez, A., and Valencia-Lazcano, A.A., “Chitosan: properties and its application in agriculture in context of molecular weight”, Polymers, 15(13): 2867, (2023).
  • [31] Verma, M. L., Kumar, S., Das A., Randhawa, J. S., and Chamundeeswari, M., “Enzyme immobilization on chitin and chitosan-based supports for biotechnological applications”, in: E. Crini Grégorio and Lichtfouse (Ed.), Sustainable Agriculture Reviews 35: Chitin and Chitosan: History, Fundamentals and Innovations, Springer International Publishing, Cham, 35: 147–173, (2019).
  • [32] Negm, N.A., Abubshait, H.A., Abubshait, S.A., Abou Kana, M.T.H., Mohamed, E.A., and Betiha, M.M., “Performance of chitosan polymer as platform during sensors fabrication and sensing applications”, International Journal of Biological Macromolecules, 165: 402–435, (2020). [33] Nemiwal, M., Zhang, T.C., and Kumar, D., “Enzyme immobilized nanomaterials as electrochemical biosensors for detection of biomolecules”, Enzyme and Microbial Technology, 156: 110006, (2022).
  • [34] Lin, W.R., Chuang, Y.J., Lee, C.H., Tseng, F.G., and Chen, F.R., “Fabrication and characterization of a high-performance multi-annular backscattered electron detector for desktop SEM”, Sensors, 18: 3093, (2018).
  • [35] Thalir, S., Celshia Susai, S., Selvamani, M., Suresh, V., Sethuraman, S., and Ramalingam, K., “Sensing of quercetin with cobalt-doped manganese nanosystems by electrochemical method”, Cureus, 16(3): e56665, (2024).
  • [36] Katowah, D.F., Hussein, M.A., Alam, M.M., Gabal, M.A., Sobahi, T.R., Asiri, A.M., Uddin, J., and Rahman, M.M., “Selective fabrication of an electrochemical sensor for Pb2+ based on poly(pyrrole-co-o–toluidine)/CoFe2O4 nanocomposites, ChemistrySelect, 4: 10609–10619, (2019).
  • [37] Zare, I., Yaraki, M.T., Speranza, G., Najafabadi, A.H., Shourangiz-Haghighi, Aa, Nik, A.B., Manshian, B.B., Saraiva, C., Soenen, S.J., Kogan, M.J., Lee, J.W., Apollo, N. V, Bernardino, L., Araya, E., Mayer, D., Mao, G., and Hamblin, M.R., “Gold nanostructures: synthesis, properties, and neurological applications”, Chemical Society Reviews, 51: 2601–2680, (2022).
  • [38] Song, X., Wang, D., and Kim, M., “Development of an immuno-electrochemical glass carbon electrode sensor based on graphene oxide/gold nanocomposite and antibody for the detection of patulin”, Food Chemistry, 342:128257, (2021).
  • [39] Lacina, K., Věžník, J., Sopoušek, J., Farka, Z., Lacinová, V., and Skládal, P., “Concentration and diffusion of the redox probe as key parameters for label-free impedimetric immunosensing”, Bioelectrochemistry, 149: 108308, (2023).
  • [40] Mobin, S.M., Sanghavi, B.J., Srivastava, A.K., Mathur, P., and Lahiri, G.K., “Biomimetic sensor for certain phenols employing a copper (II) complex”, Analytical Chemistry, 82: 5983–5992, (2010). [41] Haji-Hashemi, H., Norouzi, P., Safarnejad, M.R., and Ganjali, M.R., “Label-free electrochemical immunosensor for direct detection of Citrus tristeza virus using modified gold electrode”, Sensors and Actuators B: Chemical, 244: 211–216, (2017).
  • [42] Han, E., Li, X., Zhang, Y., Zhang, M., Cai, J., and Zhang, X., “Electrochemical immunosensor based on self-assembled gold nanorods for label-free and sensitive determination of Staphylococcus aureus”, Analytical Biochemistry, 611: 113982, (2020). [43] Duan, S., Wu, X., Shu, Z., Xiao, A., Chai, B., Pi, F., Wang, J., Dai, H., and Liu, X., “Curcumin-enhanced MOF electrochemical sensor for sensitive detection of methyl parathion in vegetables and fruits”, Microchemical Journal, 184: 108182, (2023).
  • [44] Tabrizi, M.A., Shamsipur, M., and Mostafaie, A., “A high sensitive label-free immunosensor for the determination of human serum IgG using overoxidized polypyrrole decorated with gold nanoparticle modified electrode”, Materials Science and Engineering C, 59: 965–969, (2016). [45] Habibi, M.M., Mirhosseini, S.A., Sajjadi, S., and Keihan, A.H., “A novel label-free electrochemical immunesensor for ultrasensitive detection of LT toxin using prussian blue@gold nanoparticles composite as a signal amplification”, Bioelectrochemistry, 142: 107887, (2021).
  • [46] Kareem, F., Rizwan, M., and Ahmed, M.U., “A novel label-free electrochemical immunosensor based on DCNC@AgNPs/MXene for the detection of apolipoprotein A-1 in human serum”, Electrochimica Acta, 474: 143536, (2024).
  • [47] Lacina, K., Věžník, J., Sopoušek, J., Farka, Z., Lacinová, V., and Skládal, P., “Concentration and diffusion of the redox probe as key parameters for label-free impedimetric immunosensing”, Bioelectrochemistry, 149: 108308, (2023).
  • [48] Kuntamung, K., Jakmunee, J., and Ounnunkad, K., “A label-free multiplex electrochemical biosensor for the detection of three breast cancer biomarker proteins employing dye/metal ion-loaded and antibody-conjugated polyethyleneimine-gold nanoparticles”, Journal of Materials Chemistry B, 9: 6576–6585, (2021). [49] He, P., Wang, Z., Zhang, L., and Yang, W., “Development of a label-free electrochemical immunosensor based on carbon nanotube for rapid determination of clenbuterol”, Food Chemistry, 112: 707–714, (2009).
  • [50] Findlay, J.W.A, Dillard, R. F., “Appropriate calibration curve fitting in ligand binding assays”, The AAPS Journal, 9 (2): 29, (2007). [51] Cai, J., Gou, X., Sun, B., Li, W., Li, D., Liu, J., Hu, F., and Li, Y., “Porous graphene-black phosphorus nanocomposite modified electrode for detection of leptin”, Biosensors and Bioelectronics, 137: 88–95, (2019).
  • [52] Chen, W., Lei, Y., and Li, C.M., “Regenerable leptin immunosensor based on protein G immobilized Au-pyrrole propylic acid-polypyrrole nanocomposite”, Electroanalysis 22: 1078–1083, (2010).
  • [53] Ojeda, I., Moreno-Guzmán, M., González-Cortés, A., Yáñez-Sedeño, P., and Pingarrón, J.M., “A disposable electrochemical immunosensor for the determination of leptin in serum and breast milk”, Analyst, 138: 4284–4291, (2013).
  • [54] Zhang, Q., Qing, Y., Huang, X., Li, C., and Xue, J., “Synthesis of single-walled carbon nanotubes–chitosan nanocomposites for the development of an electrochemical biosensor for serum leptin detection”, Materials Letters, 211: 348–351, (2018).
  • [55] Seong, R., Heo, Y.S., “A disposable and sensitive electrochemical immunosensor for label-free detection of leptin from diet-induced obesity (DIO) C57BL/6J mice model, Korean Society of Mechanical Engineers Spring and Autumn Conference, 1004–1008 (2017).
  • [56] Özcan, B., Sezgintürk, M.K., “A novel and disposable GP- based impedimetric biosensor using electropolymerization process with PGA for highly sensitive determination of leptin: Early diagnosis of childhood obesity”, Talanta, 225: 121985, (2021).
  • [57] Nishimura, T., Sato, Y., Tanaka, M., Kurita, R., Nakamoto, K., and Niwa, O., “Bifunctional tri(ethylene glycol) alkanethiol mono layer modified gold electrode for on-chip electrochemical immunoassay of pg level leptin”, Analytical Sciences, 27(5): 465–469, (2011).
  • [58] Sung, R., Heo, Y. S., “Sandwich ELISA-based electrochemical biosensor for leptin in control and diet-induced obesity mouse model”, Biosensors, 11(1):7, (2021).
Year 2024, Volume: 37 Issue: 4, 1674 - 1689, 01.12.2024
https://doi.org/10.35378/gujs.1422409

Abstract

References

  • [1] Escalante-Aburto, A., Mendoza-Córdova, M.Y., Mahady, G.B., Luna-Vital, D.A. Gutiérrez-Uribe, J.A., and Chuck-Hernández C., “Consumption of dietary anthocyanins and their association with a reduction in obesity biomarkers and the prevention of obesity”, Trends in Food Science and Technology, 140: 104140, (2023).
  • [2] Peng, J., Yin, L., and Wang, X., “Central and peripheral leptin resistance in obesity and improvements of exercise”, Hormones and Behavior, 133: 105006, (2021).
  • [3] Pronk, N.P., Eneli, I., Economos, C.D., Bradley, D., Fassbender, J., Calancie, L., Patawaran, W., and Hovmand, P.S., “Using systems science for strategic planning of obesity prevention and treatment: the roundtable on obesity solutions experience”, Current Problems in Cardiology, 48(8): 101240, (2023). [4] Yadav, R., Swetanshu, and Singh, P., “The molecular mechanism of obesity: The science behind natural exercise yoga and healthy diets in the treatment of obesity”, Cardiology Research and Practice, 49(2): 102345, (2024).
  • [5] Yu, M., Ju, M., Fang, P., and Zhang, Z., “Emerging central and peripheral actions of spexin in feeding behavior, leptin resistance and obesity”, Biochemical Pharmacology, 202: 115121, (2022).
  • [6] Chrysafi, P., Perakakis, N., Farr, O.M., Stefanakis, K., Peradze, N., Sala-Vila, A., and Mantzoros, C.S., “Leptin alters energy intake and fat mass but not energy expenditure in lean subjects”, Nature Communications, 11: 5145, (2020).
  • [7] Vilariño-García, T., Polonio-González, M.L., Pérez-Pérez, A., Ribalta, J., Arrieta, F., Aguilar, M., Obaya, J.C., Gimeno-Orna, J.A., Iglesias, P., Navarro, J., Durán, S., Pedro-Botet, J., and Sánchez-Margalet V., “Role of leptin in obesity, cardiovascular disease, and Type 2 diabetes”, International Journal of Molecular Sciences, 25(4): 2338, (2024).
  • [8] Picó, C., Palou, M., Pomar, C.A., Rodríguez, A.M., and Palou, A., “Leptin as a key regulator of the adipose organ”, Reviews in Endocrine and Metabolic Disorders, 23: 13–30, (2022).
  • [9] Richards, M.P., Poch, S.M., “Quantitative analysis of gene expression by reverse transcription polymerase chain reaction and capillary electrophoresis with laser-induced fluorescence detection”, Molecular Biotechnology, 21: 19–37, (2002). [10] Kling, P., Rønnestad, I., Stefansson, S.O., Murashita, K., Kurokawa, T., and Björnsson, B.T., “A homologous salmonid leptin radioimmunoassay indicates elevated plasma leptin levels during fasting of rainbow trout”, General and Comparative Endocrinology, 162: 307–312, (2009).
  • [11] Akib, R.D., Aminuddin, A., Hamid, F., Prihantono, P., Bahar, B., and Hadju, V., “Leptin levels in children with malnutrition”, Gaceta Sanitaria, 35(2): 278–280, (2021).
  • [12] Sankiewicz, A., Hermanowicz, A., Grycz, A., Łukaszewski, Z., and Gorodkiewicz, E., “An SPR imaging immunosensor for leptin determination in blood plasma”, Analytical Methods, 13: 642–646, (2021).
  • [13] Cai, J., Gou, X., Sun, B., Li, W., Li, D., Liu, J., Hu, F., and Li, Y., “Porous graphene-black phosphorus nanocomposite modified electrode for detection of leptin”, Biosensors Bioelectronics, 137: 88–95, (2019).
  • [14] Naresh, V., Lee, N., “A review on biosensors and recent development of nanostructured materials-enabled biosensors”, Sensors, 21(4): 1109, (2021).
  • [15] Lino, C., Barrias, S., Chaves, R., Adega, F., Martins-Lopes, P., and Fernandes, J.R., “Biosensors as diagnostic tools in clinical applications”, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1877(3): 188726, (2022).
  • [16] Chen, H., Zhang, J., Huang, R., Wang, D., Deng, D., Zhang, Q., and Luo, L., “The applications of electrochemical immunosensors in the detection of disease biomarkers: a review”, Molecules, 28(8): 3605, (2023).
  • [17] Ghasemi, Y., Sadeghi, M., Ehzari, H., and Derakhshankhah, H., “Label-free electrochemical immunosensor based on antibody-immobilized Fe-Cu layered double hydroxide nanosheet as an electrochemical probe for the detection of ultra trace amount of prostate cancer biomarker (PSA)”, Microchemical Journal, 195: 109460, (2023). [18] Sangili, A., Kalyani, T., Chen, S.M., Nanda, A., and Jana, S.K., “Label-free electrochemical immunosensor based on one-step electrochemical deposition of AuNP-RGO nanocomposites for detection of endometriosis marker CA 125”, ACS Applied Bio Materials, 3: 7620–7630, (2020). [19] Wei, S., Xiao, H., Cao, L., and Chen, Z., “A label-free immunosensor based on graphene oxide/Fe3O4/Prussian blue nanocomposites for the electrochemical determination of HBsAg”, Biosensors (Basel), 10: 25, (2020).
  • [20] Andryukov, B.G., Besednova, N.N., Romashko, R. V, Zaporozhets, T.S., and Efimov, T.A. “Label-free biosensors for laboratory-based diagnostics of infections: current achievements and new trends”, Biosensors (Basel) 10(2):11, (2020).
  • [21] Patel, M., Agrawal, M., and Srivastava, A., “Signal amplification strategies in electrochemical biosensors via antibody immobilization and nanomaterial-based transducers”, Materials Advances, 3: 8864-8865, (2022).
  • [22] Al-Amiery, A.A., Fayad, M.A., Abdul Wahhab, H.A., Al-Azzawi, W.K., Mohammed, J.K., and Sh. Majdi, H., “Interfacial engineering for advanced functional materials: surfaces, interfaces, and applications”, Results in Engineering, 22: 102125, (2024).
  • [23] Wang, D., Astruc, D., “Fast-growing field of magnetically recyclable nanocatalysts”, Chemical Reviews, 114: 6949–6985, (2014).
  • [24] Yalcin, B., Ozcelik, S., Icin, K., Senturk, K., Ozcelik, B., and Arda, L., “Structural, optical, magnetic, photocatalytic activity and related biological effects of CoFe2O4 ferrite nanoparticles”, Journal of Materials Science: Materials in Electronics 32: 13068–13080, (2021).
  • [25] Liu, P., Li, C., Zhang, R., Tang, Q., Wei, J., Lu, Y., and Shen, P., “An ultrasensitive electrochemical immunosensor for procalcitonin detection based on the gold nanoparticles-enhanced tyramide signal amplification strategy”, Biosensors and Bioelectronics, 126: 543–550, (2019). [26] Malinowska, I., Ryżyńska, Z., Mrotek, E., Klimczuk, T., and Zielińska-Jurek, A., “Synthesis of CoFe2O4 nanoparticles: the effect of ionic strength, concentration, and precursor type on morphology and magnetic properties”, Journal of Nanomaterials, 2020: 9046219, (2020).
  • [27] Montes-García, V., Squillaci, M.A., Diez-Castellnou, M., Ong, Q.K., Stellacci, F., and Samorì, P., “Chemical sensing with Au and Ag nanoparticles”, Chemical Society Reviews, 50: 1269–1304, (2021).
  • [28] Wu, B., Yeasmin, S., Liu, Y., and Cheng, L.-J., Sensitive and selective electrochemical sensor for serotonin detection based on ferrocene-gold nanoparticles decorated multiwall carbon nanotubes”, Sensors and Actuators B: Chemical, 354: 131216, (2022).
  • [29] Pellis, A., Guebitz, G.M., and Nyanhongo, G.S., “Chitosan: sources, processing and modification techniques”, Gels, 8(7): 393, (2022).
  • [30] Román-Doval, R., Torres-Arellanes, S.P., Tenorio-Barajas, A.Y., Gómez-Sánchez, A., and Valencia-Lazcano, A.A., “Chitosan: properties and its application in agriculture in context of molecular weight”, Polymers, 15(13): 2867, (2023).
  • [31] Verma, M. L., Kumar, S., Das A., Randhawa, J. S., and Chamundeeswari, M., “Enzyme immobilization on chitin and chitosan-based supports for biotechnological applications”, in: E. Crini Grégorio and Lichtfouse (Ed.), Sustainable Agriculture Reviews 35: Chitin and Chitosan: History, Fundamentals and Innovations, Springer International Publishing, Cham, 35: 147–173, (2019).
  • [32] Negm, N.A., Abubshait, H.A., Abubshait, S.A., Abou Kana, M.T.H., Mohamed, E.A., and Betiha, M.M., “Performance of chitosan polymer as platform during sensors fabrication and sensing applications”, International Journal of Biological Macromolecules, 165: 402–435, (2020). [33] Nemiwal, M., Zhang, T.C., and Kumar, D., “Enzyme immobilized nanomaterials as electrochemical biosensors for detection of biomolecules”, Enzyme and Microbial Technology, 156: 110006, (2022).
  • [34] Lin, W.R., Chuang, Y.J., Lee, C.H., Tseng, F.G., and Chen, F.R., “Fabrication and characterization of a high-performance multi-annular backscattered electron detector for desktop SEM”, Sensors, 18: 3093, (2018).
  • [35] Thalir, S., Celshia Susai, S., Selvamani, M., Suresh, V., Sethuraman, S., and Ramalingam, K., “Sensing of quercetin with cobalt-doped manganese nanosystems by electrochemical method”, Cureus, 16(3): e56665, (2024).
  • [36] Katowah, D.F., Hussein, M.A., Alam, M.M., Gabal, M.A., Sobahi, T.R., Asiri, A.M., Uddin, J., and Rahman, M.M., “Selective fabrication of an electrochemical sensor for Pb2+ based on poly(pyrrole-co-o–toluidine)/CoFe2O4 nanocomposites, ChemistrySelect, 4: 10609–10619, (2019).
  • [37] Zare, I., Yaraki, M.T., Speranza, G., Najafabadi, A.H., Shourangiz-Haghighi, Aa, Nik, A.B., Manshian, B.B., Saraiva, C., Soenen, S.J., Kogan, M.J., Lee, J.W., Apollo, N. V, Bernardino, L., Araya, E., Mayer, D., Mao, G., and Hamblin, M.R., “Gold nanostructures: synthesis, properties, and neurological applications”, Chemical Society Reviews, 51: 2601–2680, (2022).
  • [38] Song, X., Wang, D., and Kim, M., “Development of an immuno-electrochemical glass carbon electrode sensor based on graphene oxide/gold nanocomposite and antibody for the detection of patulin”, Food Chemistry, 342:128257, (2021).
  • [39] Lacina, K., Věžník, J., Sopoušek, J., Farka, Z., Lacinová, V., and Skládal, P., “Concentration and diffusion of the redox probe as key parameters for label-free impedimetric immunosensing”, Bioelectrochemistry, 149: 108308, (2023).
  • [40] Mobin, S.M., Sanghavi, B.J., Srivastava, A.K., Mathur, P., and Lahiri, G.K., “Biomimetic sensor for certain phenols employing a copper (II) complex”, Analytical Chemistry, 82: 5983–5992, (2010). [41] Haji-Hashemi, H., Norouzi, P., Safarnejad, M.R., and Ganjali, M.R., “Label-free electrochemical immunosensor for direct detection of Citrus tristeza virus using modified gold electrode”, Sensors and Actuators B: Chemical, 244: 211–216, (2017).
  • [42] Han, E., Li, X., Zhang, Y., Zhang, M., Cai, J., and Zhang, X., “Electrochemical immunosensor based on self-assembled gold nanorods for label-free and sensitive determination of Staphylococcus aureus”, Analytical Biochemistry, 611: 113982, (2020). [43] Duan, S., Wu, X., Shu, Z., Xiao, A., Chai, B., Pi, F., Wang, J., Dai, H., and Liu, X., “Curcumin-enhanced MOF electrochemical sensor for sensitive detection of methyl parathion in vegetables and fruits”, Microchemical Journal, 184: 108182, (2023).
  • [44] Tabrizi, M.A., Shamsipur, M., and Mostafaie, A., “A high sensitive label-free immunosensor for the determination of human serum IgG using overoxidized polypyrrole decorated with gold nanoparticle modified electrode”, Materials Science and Engineering C, 59: 965–969, (2016). [45] Habibi, M.M., Mirhosseini, S.A., Sajjadi, S., and Keihan, A.H., “A novel label-free electrochemical immunesensor for ultrasensitive detection of LT toxin using prussian blue@gold nanoparticles composite as a signal amplification”, Bioelectrochemistry, 142: 107887, (2021).
  • [46] Kareem, F., Rizwan, M., and Ahmed, M.U., “A novel label-free electrochemical immunosensor based on DCNC@AgNPs/MXene for the detection of apolipoprotein A-1 in human serum”, Electrochimica Acta, 474: 143536, (2024).
  • [47] Lacina, K., Věžník, J., Sopoušek, J., Farka, Z., Lacinová, V., and Skládal, P., “Concentration and diffusion of the redox probe as key parameters for label-free impedimetric immunosensing”, Bioelectrochemistry, 149: 108308, (2023).
  • [48] Kuntamung, K., Jakmunee, J., and Ounnunkad, K., “A label-free multiplex electrochemical biosensor for the detection of three breast cancer biomarker proteins employing dye/metal ion-loaded and antibody-conjugated polyethyleneimine-gold nanoparticles”, Journal of Materials Chemistry B, 9: 6576–6585, (2021). [49] He, P., Wang, Z., Zhang, L., and Yang, W., “Development of a label-free electrochemical immunosensor based on carbon nanotube for rapid determination of clenbuterol”, Food Chemistry, 112: 707–714, (2009).
  • [50] Findlay, J.W.A, Dillard, R. F., “Appropriate calibration curve fitting in ligand binding assays”, The AAPS Journal, 9 (2): 29, (2007). [51] Cai, J., Gou, X., Sun, B., Li, W., Li, D., Liu, J., Hu, F., and Li, Y., “Porous graphene-black phosphorus nanocomposite modified electrode for detection of leptin”, Biosensors and Bioelectronics, 137: 88–95, (2019).
  • [52] Chen, W., Lei, Y., and Li, C.M., “Regenerable leptin immunosensor based on protein G immobilized Au-pyrrole propylic acid-polypyrrole nanocomposite”, Electroanalysis 22: 1078–1083, (2010).
  • [53] Ojeda, I., Moreno-Guzmán, M., González-Cortés, A., Yáñez-Sedeño, P., and Pingarrón, J.M., “A disposable electrochemical immunosensor for the determination of leptin in serum and breast milk”, Analyst, 138: 4284–4291, (2013).
  • [54] Zhang, Q., Qing, Y., Huang, X., Li, C., and Xue, J., “Synthesis of single-walled carbon nanotubes–chitosan nanocomposites for the development of an electrochemical biosensor for serum leptin detection”, Materials Letters, 211: 348–351, (2018).
  • [55] Seong, R., Heo, Y.S., “A disposable and sensitive electrochemical immunosensor for label-free detection of leptin from diet-induced obesity (DIO) C57BL/6J mice model, Korean Society of Mechanical Engineers Spring and Autumn Conference, 1004–1008 (2017).
  • [56] Özcan, B., Sezgintürk, M.K., “A novel and disposable GP- based impedimetric biosensor using electropolymerization process with PGA for highly sensitive determination of leptin: Early diagnosis of childhood obesity”, Talanta, 225: 121985, (2021).
  • [57] Nishimura, T., Sato, Y., Tanaka, M., Kurita, R., Nakamoto, K., and Niwa, O., “Bifunctional tri(ethylene glycol) alkanethiol mono layer modified gold electrode for on-chip electrochemical immunoassay of pg level leptin”, Analytical Sciences, 27(5): 465–469, (2011).
  • [58] Sung, R., Heo, Y. S., “Sandwich ELISA-based electrochemical biosensor for leptin in control and diet-induced obesity mouse model”, Biosensors, 11(1):7, (2021).
There are 47 citations in total.

Details

Primary Language English
Subjects Sensor Technology
Journal Section Chemistry
Authors

Günseli Birge 0000-0002-6717-5353

Derya Koyuncu Zeybek 0000-0003-4214-1744

Early Pub Date September 6, 2024
Publication Date December 1, 2024
Submission Date January 19, 2024
Acceptance Date May 6, 2024
Published in Issue Year 2024 Volume: 37 Issue: 4

Cite

APA Birge, G., & Koyuncu Zeybek, D. (2024). CoFe2O4-Chitosan and Gold Nanoparticles Based Label-Free Electrochemical Immunosensor for Determination of Leptin. Gazi University Journal of Science, 37(4), 1674-1689. https://doi.org/10.35378/gujs.1422409
AMA Birge G, Koyuncu Zeybek D. CoFe2O4-Chitosan and Gold Nanoparticles Based Label-Free Electrochemical Immunosensor for Determination of Leptin. Gazi University Journal of Science. December 2024;37(4):1674-1689. doi:10.35378/gujs.1422409
Chicago Birge, Günseli, and Derya Koyuncu Zeybek. “CoFe2O4-Chitosan and Gold Nanoparticles Based Label-Free Electrochemical Immunosensor for Determination of Leptin”. Gazi University Journal of Science 37, no. 4 (December 2024): 1674-89. https://doi.org/10.35378/gujs.1422409.
EndNote Birge G, Koyuncu Zeybek D (December 1, 2024) CoFe2O4-Chitosan and Gold Nanoparticles Based Label-Free Electrochemical Immunosensor for Determination of Leptin. Gazi University Journal of Science 37 4 1674–1689.
IEEE G. Birge and D. Koyuncu Zeybek, “CoFe2O4-Chitosan and Gold Nanoparticles Based Label-Free Electrochemical Immunosensor for Determination of Leptin”, Gazi University Journal of Science, vol. 37, no. 4, pp. 1674–1689, 2024, doi: 10.35378/gujs.1422409.
ISNAD Birge, Günseli - Koyuncu Zeybek, Derya. “CoFe2O4-Chitosan and Gold Nanoparticles Based Label-Free Electrochemical Immunosensor for Determination of Leptin”. Gazi University Journal of Science 37/4 (December 2024), 1674-1689. https://doi.org/10.35378/gujs.1422409.
JAMA Birge G, Koyuncu Zeybek D. CoFe2O4-Chitosan and Gold Nanoparticles Based Label-Free Electrochemical Immunosensor for Determination of Leptin. Gazi University Journal of Science. 2024;37:1674–1689.
MLA Birge, Günseli and Derya Koyuncu Zeybek. “CoFe2O4-Chitosan and Gold Nanoparticles Based Label-Free Electrochemical Immunosensor for Determination of Leptin”. Gazi University Journal of Science, vol. 37, no. 4, 2024, pp. 1674-89, doi:10.35378/gujs.1422409.
Vancouver Birge G, Koyuncu Zeybek D. CoFe2O4-Chitosan and Gold Nanoparticles Based Label-Free Electrochemical Immunosensor for Determination of Leptin. Gazi University Journal of Science. 2024;37(4):1674-89.