Research Article
BibTex RIS Cite

Preparation and Characterisation of LAITP/PVDF Composite Solid Electrolyte for Lithium Battery

Year 2025, Volume: 38 Issue: 3, 1449 - 1460, 01.09.2025
https://doi.org/10.35378/gujs.1589340

Abstract

This study investigates the potential of LAITP/PVDF composite electrolytes to improve the safety and performance of lithium-ion batteries. The study focuses on the synthesis and characterization of composite solid electrolyte consisting of indium-doped lithium aluminum titanium phosphate (LAITP) ceramic material and LiClO4 salt with polyvinylidene fluoride (PVDF) as the polymer matrix. The LAITP ceramic, synthesized via solid-state synthesis, demonstrates high ionic conductivity, thermal stability, and mechanical robustness. PVDF provides electrochemical and thermal stability to the composite. The composite electrolytes were prepared by integrating LAITP into the PVDF matrix through the solution casting method. Various characterization methods were employed to assess the properties of the resulting composite. X-ray diffraction (XRD) was used to examine the crystal structure, while scanning electron microscopy (SEM) provided insights into the morphological features. Ionic conductivity measurements were conducted using electrochemical impedance spectroscopy (EIS), enabling an evaluation of the composite's electrochemical performance. The LAITP-reinforced PVDF-based composite solid electrolyte exhibited an ionic conductivity of 1.7 × 10⁻5 S cm⁻1 at room temperature.

References

  • [1] Wei, T., Wang, Z., Zhang, Q., Zhou, Y., Sun, C., Wang, M., Qin, S., “Metal–organic framework-based solid-state electrolytes for all solid-state lithium metal batteries: a review”, CrystEngComm, 24(28): 5014-5030, (2022).
  • [2] Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D., “Challenges in the development of advanced Li-ion batteries: a review”, Energy & environmental science, 4(9): 3243-3262, (2011).
  • [3] Almehmadi, F. A., Alqaed, S., Mustafa, J., Jamil, B., Sharifpur, M., Cheraghian, G., “Combining an active method and a passive method in cooling lithium-ion batteries and using the generated heat in heating a residential unit”, Journal of Energy Storage, 49: 104181, (2022).
  • [4] Alqaed, S., Almehmadi, F. A., Mustafa, J., Husain, S., Cheraghian, G., “Effect of nano phase change materials on the cooling process of a triangular lithium battery pack”, Journal of Energy Storage, 51: 104326, (2022).
  • [5] Yu, X., Manthiram, A., “A review of composite polymer-ceramic electrolytes for lithium batteries”, Energy Storage Materials, 34: 282-300, (2021).
  • [6] Janek, J., Zeier, W. G., “A solid future for battery development”, Nature energy, 1(9): 1-4, (2016).
  • [7] Fan, P., Liu, H., Marosz, V., Samuels, N. T., Suib, S. L., Sun, L., Liao, L., "High performance composite polymer electrolytes for lithium‐ion batteries", Advanced Functional Materials, 31(23): 2101380, (2021).
  • [8] Mauger, A., Julien, C. M., Paolella, A., Armand, M., Zaghib, K., “Building better batteries in the solid state: A review”, Materials, 12(23): 3892, (2019).
  • [9] Sun, C., Liu, J., Gong, Y., Wilkinson, D. P., Zhang, J., “Recent advances in all-solid-state rechargeable lithium batteries”, Nano Energy, 33: 363-386, (2017).
  • [10] Yao, P., Yu, H., Ding, Z., Liu, Y., Lu, J., Lavorgna, M., Liu, X., "Review on polymer-based composite electrolytes for lithium batteries", Frontiers in chemistry, 7 : 522, (2019).
  • [11] Zhao, C. Z., Zhao, B. C., Yan, C., Zhang, X. Q., Huang, J. Q., Mo, Y., Zhang, Q., "Liquid phase therapy to solid electrolyte–electrode interface in solid-state Li metal batteries: a review", Energy Storage Materials, 24: 75-84, (2020).
  • [12] Dirican, M., Yan, C., Zhu, P., Zhang, X., “Composite solid electrolytes for all-solid-state lithium batteries”, Materials Science and Engineering: R: Reports, (136): 27-46, (2019).
  • [13] Wang, X., Huang, S., Peng, Y., Min, Y., Xu, Q., “Research Progress on the Composite Methods of Composite Electrolytes for Solid‐State Lithium Batteries”, ChemSusChem, 17(14): e202301262, (2024).
  • [14] Zhou, D., Shanmukaraj, D., Tkacheva, A., Armand, M., Wang, G., “Polymer electrolytes for lithium-based batteries: advances and prospects”, Chem, 5(9): 2326-2352, (2019).
  • [15] Li, H., Xu, Z., Yang, J., Wang, J., Hirano, S. I., “Polymer electrolytes for rechargeable lithium metal batteries”, Sustainable Energy & Fuels, 4(11): 5469-5487, (2020).
  • [16] Hallinan, D. T., Balsara, N. P., “Annual Review of Materials Research”, içinde Annual Reviews, Palo Alto, 43: (2013).
  • [17] Mindemark, J., Lacey, M. J., Bowden, T., Brandell, D., “Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes”, Progress in Polymer Science, 81: 114-143, (2018).
  • [18] Siyal, S. H., Li, M., Li, H., Lan, J. L., Yu, Y., Yang, X., “Ultraviolet irradiated PEO/LATP composite gel polymer electrolytes for lithium-metallic batteries (LMBs)”, Applied Surface Science, 494: 1119-1126, (2019).
  • [19] Zhang, D., Li, L., Wu, X., Wang, J., Li, Q., Pan, K., He, J., "Research progress and application of PEO-based solid state polymer composite electrolytes", Frontiers in Energy Research, 9: 726738, (2021).
  • [20] Shi, X., Ma, N., Wu, Y., Lu, Y., Xiao, Q., Li, Z., Lei, G., "Fabrication and electrochemical properties of LATP/PVDF composite electrolytes for rechargeable lithium-ion battery", Solid State Ionics, 325: 112-119, (2018).
  • [21] Jin, Y., Liu, C., Jia, Z., Zong, X., Li, D., Fu, M., Xiong, Y., "Building a highly functional Li1. 3Al0. 3Ti1. 7 (PO4) 3/poly (vinylidene fluoride) composite electrolyte for all-solid-state lithium batteries", Journal of Alloys and Compounds, 874: 159890, (2021).
  • [22] Laxmayyaguddi, Y., Mydur, N., Shankar Pawar, A., Hebri, V., Vandana, M., Sanjeev, G., Hundekal, D., "Modified thermal, dielectric, and electrical conductivity of PVDF-HFP/LiClO4 polymer electrolyte films by 8 MeV electron beam irradiation", ACS omega, 3(10): 14188-14200, (2018).
  • [23] Lu, X., Luo, J., Lan, L., Zhang, B., Chen, Z., Wang, Y., Mo, Q., "Poly (Vinylidene Fluoride-Hexafluoropropylene)–Lithium Titanium Aluminum Phosphate-Based Gel Polymer Electrolytes Synthesized by Immersion Precipitation for High-Performance Lithium Metal Batteries", Gels, 10(3): 179, (2024).
  • [24] Chen, S. Y., Hsieh, C. T., Zhang, R. S., Mohanty, D., Gandomi, Y. A., Hung, I. M., “Hybrid solid state electrolytes blending NASICON-type Li1+ xAlxTi2–x (PO4) 3 with poly (vinylidene fluoride-co-hexafluoropropene) for lithium metal batteries”, Electrochimica Acta, 427: 140903, (2022).
  • [25] Wang, Z., Huang, B., Xue, R., Huang, X., Chen, L., “Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes”, Solid State Ionics, 121(1-4): 141-156, (1999).
  • [26] Rahman, M. Y. A., Ahmad, A., Ismail, L. H. C., Salleh, M. M., “Fabrication and characterization of a solid polymeric electrolyte of PAN‐TiO 2 ‐LiClO 4”, J of Applied Polymer Sci, 115(4): 2144-2148, (2010).
  • [27] Hussain, R., Mohammad, D., “X-ray diffraction study of the changes induced during the thermal degradation of poly (methyl methacrylate) and poly (methacryloyl chloride)”, Turkish Journal of Chemistry, 28(6): 725-730, (2004).
  • [28] Xue, Z., He, D., Xie, X., “Poly (ethylene oxide)-based electrolytes for lithium-ion batteries”, Journal of Materials Chemistry A, 3(38): 19218-19253, (2015).
  • [29] Chen, X., Zhang, Q., “Atomic Insights into the Fundamental Interactions in Lithium Battery Electrolytes”, Acc. Chem. Res., 53(9): 1992-2002, (2020).
  • [30] Wang, C., Fu, K., Kammampata, S. P., McOwen, D. W., Samson, A. J., Zhang, L., Hu, L., "Garnet-type solid-state electrolytes: materials, interfaces, and batteries", Chemical reviews, 120(10): 4257-4300, (2020).
  • [31] Aktaş, S., Özkendir, O. M., Eker, Y. R., Ateş, Ş., Atav, Ü., Çelik, G., Klysubun, W., "Study of the local structure and electrical properties of gallium substituted LLZO electrolyte materials", Journal of Alloys and Compounds, 792: 279-285, (2019).
  • [32] Saran, S., Özkendir, O. M., Atav, Ü., "The effect of two different substituted atoms in lithium positions on the structureof garnet-type solid electrolytes", Turkish Journal of Physics, 45(3): 148-158, (2021).
  • [33] Saran, S., Eker, Y. R., "Synthesis, structural and conductive properties of Nd doped garnet-type Li7La3Zr2O12 Li-ion conductor", Current Applied Physics, 41: 1-6, (2022).
  • [34] Chen, X., Li, Y., Lu, Y., Xie, J., Huang, C., Xu, X., Zhu, T., "LATP-coated LiNi0. 8Co0. 1Mn0. 1O2 cathode with compatible interface with ultrathin PVDF-reinforced PEO-LLZTO electrolyte for stable solid-state lithium batteries", Journal of Materiomics, 10(3): 682-693, (2024).
  • [35] Öksüzoğlu, F., Ateş, Ş., Özkendir, O. M., Çelik, G., Eker, Y. R., Baveghar, H., Basyooni-M. Kabatas, M. A., "The Impact of Boron Compounds on the Structure and Ionic Conductivity of LATP Solid Electrolytes", Materials, 17(15): 3846, (2024).
  • [36] Öksüzoğlu, F., “LATP Seramik Elektrolit ve Polimer Elektrolitten Oluşan Kompozit Katı Elektrolit Sentezi”, Gazi Üniversitesi Fen Fakültesi Dergisi, 5(2): 122-130, (2024).
  • [37] Jiang, Z., Carroll, B., Abraham, K. M., "Studies of some poly (vinylidene fluoride) electrolytes", Electrochimica Acta, 42(17): 2667-2677, (1997).
  • [38] Song, J. Y., Wang, Y. Y., Wan, C. C., "Review of gel-type polymer electrolytes for lithium-ion batteries. Journal of power sources, 77(2): 183-197, (1999).
  • [39] Yaddanapudi, A., “Fabrication and characterizations of lithium aluminum titanate phosphate solid electrolytes for Li-based batteries”, Master’s Thesis, Wright State University, (2018).
  • [40] Li, J., Liu, C., Miao, C., Kou, Z., Xiao, W., “Enhanced ionic conductivity and electrochemical stability of Indium doping Li 1.3 Al 0.3 Ti 1.7 (PO 4) 3 solid electrolytes for all-solid-state lithium-ion batteries”, Ionics, 1-10, (2022).
  • [41] Marcinek, M., Syzdek, J., Marczewski, M., Piszcz, M., Niedzicki, L., Kalita, M., Wieczorek, W., "Electrolytes for Li-ion transport–Review", Solid State Ionics, 276: 107-126, (2015).
  • [42] Bushkova, O. V., Yaroslavtseva, T. V., Dobrovolsky, Y. A., "New lithium salts in electrolytes for lithium-ion batteries", Russian Journal of Electrochemistry, 53: 677-699, (2017).
  • [43] Aravindan, V., Gnanaraj, J., Madhavi, S., Liu, H. K., “Lithium‐Ion Conducting Electrolyte Salts for Lithium Batteries”, Chemistry A European J, 17(51): 14326-14346, (2011).
  • [44] Kartha, T. R., Mallik, B. S., “Revisiting LiClO4 as an electrolyte for Li-ion battery: Effect of aggregation behavior on ion-pairing dynamics and conductance”, Journal of Molecular Liquids, 302: 112536, (2020).
  • [45] Hammami, A., Raymond, N., Armand, M., “Runaway risk of forming toxic compounds”, Nature, 424(6949): 635-636, (2003).
  • [46] Lancel, G., Stevens, P., Toussaint, G., Maréchal, M., Krins, N., Bregiroux, D., Laberty-Robert, C. "Hybrid Li ion conducting membrane as protection for the Li anode in an aqueous Li–air battery: coupling sol–gel chemistry and electrospinning", Langmuir, 33(37): 9288-9297, (2017).
  • [47] Öksüzoğlu, F., Çelik, G., “İndiyum katkılı LATP katı elektrolitinin yapısı ve katkılamanın iyonik iletkenlik üzerindeki etkisi”, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4): 1-1, (2024).
  • [48] Öksüzoğlu, F., Ateş, Ş., Özkendir, O. M., Çelik, G., Eker, Y. R., & Baveghar, H., "Structure and ionic conductivity of NASICON-type LATP solid electrolyte synthesized by the solid-state method", Ceramics International, 50(17): 31435-31441, (2024).
  • [49] Kotobuki, M., Koishi, M., Kato, Y., “Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a co-precipitation method”, Ionics, 19(12): 1945-1948, (2013).
  • [50] Kotobuki, M., Kobayashi, B., Koishi, M., Mizushima, T., Kakuta, N., “Preparation of Li 1·5 Al 0·5 Ti 1·5 (PO 4 ) 3 solid electrolyte via coprecipitation using various PO 4 sources”, Materials Technology, 29(sup4): A93-A97, (2014).
  • [51] Cai, X., Lei, T., Sun, D., Lin, L., “A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR”, RSC advances, 7(25): 15382-15389, (2017).
  • [52] Wu, N., Chien, P. H., Li, Y., Dolocan, A., Xu, H., Xu, B., Goodenough, J. B., "Fast Li+ conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte", Journal of the American Chemical Society, 142(5): 2497-2505, (2020).
  • [53] Xiao, W., Wang, J., Fan, L., Zhang, J., Li, X., "Recent advances in Li1+ xAlxTi2− x (PO4) 3 solid-state electrolyte for safe lithium batteries", Energy Storage Materials, 19: 379-400, (2019).
  • [54] Oota, T., Yamai, I., “Thermal Expansion Behavior of NaZr 2 (PO 4 ) 3 Type Compounds”, Journal of the American Ceramic Society, 69(1): 1-6, (1986).
  • [55] Cleveland, J. J., Bradt, R. C., "Grain size/microcracking relations for pseudobrookite oxides", Journal of the American Ceramic Society, 61(11‐12): 478-481, (1978).
  • [56] Haile, S. M., West, D. L., Campbell, J., “The role of microstructure and processing on the proton conducting properties of gadolinium-doped barium cerate”, Journal of materials research, 13(6): 1576-1595, (1998).

Year 2025, Volume: 38 Issue: 3, 1449 - 1460, 01.09.2025
https://doi.org/10.35378/gujs.1589340

Abstract

References

  • [1] Wei, T., Wang, Z., Zhang, Q., Zhou, Y., Sun, C., Wang, M., Qin, S., “Metal–organic framework-based solid-state electrolytes for all solid-state lithium metal batteries: a review”, CrystEngComm, 24(28): 5014-5030, (2022).
  • [2] Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D., “Challenges in the development of advanced Li-ion batteries: a review”, Energy & environmental science, 4(9): 3243-3262, (2011).
  • [3] Almehmadi, F. A., Alqaed, S., Mustafa, J., Jamil, B., Sharifpur, M., Cheraghian, G., “Combining an active method and a passive method in cooling lithium-ion batteries and using the generated heat in heating a residential unit”, Journal of Energy Storage, 49: 104181, (2022).
  • [4] Alqaed, S., Almehmadi, F. A., Mustafa, J., Husain, S., Cheraghian, G., “Effect of nano phase change materials on the cooling process of a triangular lithium battery pack”, Journal of Energy Storage, 51: 104326, (2022).
  • [5] Yu, X., Manthiram, A., “A review of composite polymer-ceramic electrolytes for lithium batteries”, Energy Storage Materials, 34: 282-300, (2021).
  • [6] Janek, J., Zeier, W. G., “A solid future for battery development”, Nature energy, 1(9): 1-4, (2016).
  • [7] Fan, P., Liu, H., Marosz, V., Samuels, N. T., Suib, S. L., Sun, L., Liao, L., "High performance composite polymer electrolytes for lithium‐ion batteries", Advanced Functional Materials, 31(23): 2101380, (2021).
  • [8] Mauger, A., Julien, C. M., Paolella, A., Armand, M., Zaghib, K., “Building better batteries in the solid state: A review”, Materials, 12(23): 3892, (2019).
  • [9] Sun, C., Liu, J., Gong, Y., Wilkinson, D. P., Zhang, J., “Recent advances in all-solid-state rechargeable lithium batteries”, Nano Energy, 33: 363-386, (2017).
  • [10] Yao, P., Yu, H., Ding, Z., Liu, Y., Lu, J., Lavorgna, M., Liu, X., "Review on polymer-based composite electrolytes for lithium batteries", Frontiers in chemistry, 7 : 522, (2019).
  • [11] Zhao, C. Z., Zhao, B. C., Yan, C., Zhang, X. Q., Huang, J. Q., Mo, Y., Zhang, Q., "Liquid phase therapy to solid electrolyte–electrode interface in solid-state Li metal batteries: a review", Energy Storage Materials, 24: 75-84, (2020).
  • [12] Dirican, M., Yan, C., Zhu, P., Zhang, X., “Composite solid electrolytes for all-solid-state lithium batteries”, Materials Science and Engineering: R: Reports, (136): 27-46, (2019).
  • [13] Wang, X., Huang, S., Peng, Y., Min, Y., Xu, Q., “Research Progress on the Composite Methods of Composite Electrolytes for Solid‐State Lithium Batteries”, ChemSusChem, 17(14): e202301262, (2024).
  • [14] Zhou, D., Shanmukaraj, D., Tkacheva, A., Armand, M., Wang, G., “Polymer electrolytes for lithium-based batteries: advances and prospects”, Chem, 5(9): 2326-2352, (2019).
  • [15] Li, H., Xu, Z., Yang, J., Wang, J., Hirano, S. I., “Polymer electrolytes for rechargeable lithium metal batteries”, Sustainable Energy & Fuels, 4(11): 5469-5487, (2020).
  • [16] Hallinan, D. T., Balsara, N. P., “Annual Review of Materials Research”, içinde Annual Reviews, Palo Alto, 43: (2013).
  • [17] Mindemark, J., Lacey, M. J., Bowden, T., Brandell, D., “Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes”, Progress in Polymer Science, 81: 114-143, (2018).
  • [18] Siyal, S. H., Li, M., Li, H., Lan, J. L., Yu, Y., Yang, X., “Ultraviolet irradiated PEO/LATP composite gel polymer electrolytes for lithium-metallic batteries (LMBs)”, Applied Surface Science, 494: 1119-1126, (2019).
  • [19] Zhang, D., Li, L., Wu, X., Wang, J., Li, Q., Pan, K., He, J., "Research progress and application of PEO-based solid state polymer composite electrolytes", Frontiers in Energy Research, 9: 726738, (2021).
  • [20] Shi, X., Ma, N., Wu, Y., Lu, Y., Xiao, Q., Li, Z., Lei, G., "Fabrication and electrochemical properties of LATP/PVDF composite electrolytes for rechargeable lithium-ion battery", Solid State Ionics, 325: 112-119, (2018).
  • [21] Jin, Y., Liu, C., Jia, Z., Zong, X., Li, D., Fu, M., Xiong, Y., "Building a highly functional Li1. 3Al0. 3Ti1. 7 (PO4) 3/poly (vinylidene fluoride) composite electrolyte for all-solid-state lithium batteries", Journal of Alloys and Compounds, 874: 159890, (2021).
  • [22] Laxmayyaguddi, Y., Mydur, N., Shankar Pawar, A., Hebri, V., Vandana, M., Sanjeev, G., Hundekal, D., "Modified thermal, dielectric, and electrical conductivity of PVDF-HFP/LiClO4 polymer electrolyte films by 8 MeV electron beam irradiation", ACS omega, 3(10): 14188-14200, (2018).
  • [23] Lu, X., Luo, J., Lan, L., Zhang, B., Chen, Z., Wang, Y., Mo, Q., "Poly (Vinylidene Fluoride-Hexafluoropropylene)–Lithium Titanium Aluminum Phosphate-Based Gel Polymer Electrolytes Synthesized by Immersion Precipitation for High-Performance Lithium Metal Batteries", Gels, 10(3): 179, (2024).
  • [24] Chen, S. Y., Hsieh, C. T., Zhang, R. S., Mohanty, D., Gandomi, Y. A., Hung, I. M., “Hybrid solid state electrolytes blending NASICON-type Li1+ xAlxTi2–x (PO4) 3 with poly (vinylidene fluoride-co-hexafluoropropene) for lithium metal batteries”, Electrochimica Acta, 427: 140903, (2022).
  • [25] Wang, Z., Huang, B., Xue, R., Huang, X., Chen, L., “Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes”, Solid State Ionics, 121(1-4): 141-156, (1999).
  • [26] Rahman, M. Y. A., Ahmad, A., Ismail, L. H. C., Salleh, M. M., “Fabrication and characterization of a solid polymeric electrolyte of PAN‐TiO 2 ‐LiClO 4”, J of Applied Polymer Sci, 115(4): 2144-2148, (2010).
  • [27] Hussain, R., Mohammad, D., “X-ray diffraction study of the changes induced during the thermal degradation of poly (methyl methacrylate) and poly (methacryloyl chloride)”, Turkish Journal of Chemistry, 28(6): 725-730, (2004).
  • [28] Xue, Z., He, D., Xie, X., “Poly (ethylene oxide)-based electrolytes for lithium-ion batteries”, Journal of Materials Chemistry A, 3(38): 19218-19253, (2015).
  • [29] Chen, X., Zhang, Q., “Atomic Insights into the Fundamental Interactions in Lithium Battery Electrolytes”, Acc. Chem. Res., 53(9): 1992-2002, (2020).
  • [30] Wang, C., Fu, K., Kammampata, S. P., McOwen, D. W., Samson, A. J., Zhang, L., Hu, L., "Garnet-type solid-state electrolytes: materials, interfaces, and batteries", Chemical reviews, 120(10): 4257-4300, (2020).
  • [31] Aktaş, S., Özkendir, O. M., Eker, Y. R., Ateş, Ş., Atav, Ü., Çelik, G., Klysubun, W., "Study of the local structure and electrical properties of gallium substituted LLZO electrolyte materials", Journal of Alloys and Compounds, 792: 279-285, (2019).
  • [32] Saran, S., Özkendir, O. M., Atav, Ü., "The effect of two different substituted atoms in lithium positions on the structureof garnet-type solid electrolytes", Turkish Journal of Physics, 45(3): 148-158, (2021).
  • [33] Saran, S., Eker, Y. R., "Synthesis, structural and conductive properties of Nd doped garnet-type Li7La3Zr2O12 Li-ion conductor", Current Applied Physics, 41: 1-6, (2022).
  • [34] Chen, X., Li, Y., Lu, Y., Xie, J., Huang, C., Xu, X., Zhu, T., "LATP-coated LiNi0. 8Co0. 1Mn0. 1O2 cathode with compatible interface with ultrathin PVDF-reinforced PEO-LLZTO electrolyte for stable solid-state lithium batteries", Journal of Materiomics, 10(3): 682-693, (2024).
  • [35] Öksüzoğlu, F., Ateş, Ş., Özkendir, O. M., Çelik, G., Eker, Y. R., Baveghar, H., Basyooni-M. Kabatas, M. A., "The Impact of Boron Compounds on the Structure and Ionic Conductivity of LATP Solid Electrolytes", Materials, 17(15): 3846, (2024).
  • [36] Öksüzoğlu, F., “LATP Seramik Elektrolit ve Polimer Elektrolitten Oluşan Kompozit Katı Elektrolit Sentezi”, Gazi Üniversitesi Fen Fakültesi Dergisi, 5(2): 122-130, (2024).
  • [37] Jiang, Z., Carroll, B., Abraham, K. M., "Studies of some poly (vinylidene fluoride) electrolytes", Electrochimica Acta, 42(17): 2667-2677, (1997).
  • [38] Song, J. Y., Wang, Y. Y., Wan, C. C., "Review of gel-type polymer electrolytes for lithium-ion batteries. Journal of power sources, 77(2): 183-197, (1999).
  • [39] Yaddanapudi, A., “Fabrication and characterizations of lithium aluminum titanate phosphate solid electrolytes for Li-based batteries”, Master’s Thesis, Wright State University, (2018).
  • [40] Li, J., Liu, C., Miao, C., Kou, Z., Xiao, W., “Enhanced ionic conductivity and electrochemical stability of Indium doping Li 1.3 Al 0.3 Ti 1.7 (PO 4) 3 solid electrolytes for all-solid-state lithium-ion batteries”, Ionics, 1-10, (2022).
  • [41] Marcinek, M., Syzdek, J., Marczewski, M., Piszcz, M., Niedzicki, L., Kalita, M., Wieczorek, W., "Electrolytes for Li-ion transport–Review", Solid State Ionics, 276: 107-126, (2015).
  • [42] Bushkova, O. V., Yaroslavtseva, T. V., Dobrovolsky, Y. A., "New lithium salts in electrolytes for lithium-ion batteries", Russian Journal of Electrochemistry, 53: 677-699, (2017).
  • [43] Aravindan, V., Gnanaraj, J., Madhavi, S., Liu, H. K., “Lithium‐Ion Conducting Electrolyte Salts for Lithium Batteries”, Chemistry A European J, 17(51): 14326-14346, (2011).
  • [44] Kartha, T. R., Mallik, B. S., “Revisiting LiClO4 as an electrolyte for Li-ion battery: Effect of aggregation behavior on ion-pairing dynamics and conductance”, Journal of Molecular Liquids, 302: 112536, (2020).
  • [45] Hammami, A., Raymond, N., Armand, M., “Runaway risk of forming toxic compounds”, Nature, 424(6949): 635-636, (2003).
  • [46] Lancel, G., Stevens, P., Toussaint, G., Maréchal, M., Krins, N., Bregiroux, D., Laberty-Robert, C. "Hybrid Li ion conducting membrane as protection for the Li anode in an aqueous Li–air battery: coupling sol–gel chemistry and electrospinning", Langmuir, 33(37): 9288-9297, (2017).
  • [47] Öksüzoğlu, F., Çelik, G., “İndiyum katkılı LATP katı elektrolitinin yapısı ve katkılamanın iyonik iletkenlik üzerindeki etkisi”, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4): 1-1, (2024).
  • [48] Öksüzoğlu, F., Ateş, Ş., Özkendir, O. M., Çelik, G., Eker, Y. R., & Baveghar, H., "Structure and ionic conductivity of NASICON-type LATP solid electrolyte synthesized by the solid-state method", Ceramics International, 50(17): 31435-31441, (2024).
  • [49] Kotobuki, M., Koishi, M., Kato, Y., “Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a co-precipitation method”, Ionics, 19(12): 1945-1948, (2013).
  • [50] Kotobuki, M., Kobayashi, B., Koishi, M., Mizushima, T., Kakuta, N., “Preparation of Li 1·5 Al 0·5 Ti 1·5 (PO 4 ) 3 solid electrolyte via coprecipitation using various PO 4 sources”, Materials Technology, 29(sup4): A93-A97, (2014).
  • [51] Cai, X., Lei, T., Sun, D., Lin, L., “A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR”, RSC advances, 7(25): 15382-15389, (2017).
  • [52] Wu, N., Chien, P. H., Li, Y., Dolocan, A., Xu, H., Xu, B., Goodenough, J. B., "Fast Li+ conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte", Journal of the American Chemical Society, 142(5): 2497-2505, (2020).
  • [53] Xiao, W., Wang, J., Fan, L., Zhang, J., Li, X., "Recent advances in Li1+ xAlxTi2− x (PO4) 3 solid-state electrolyte for safe lithium batteries", Energy Storage Materials, 19: 379-400, (2019).
  • [54] Oota, T., Yamai, I., “Thermal Expansion Behavior of NaZr 2 (PO 4 ) 3 Type Compounds”, Journal of the American Ceramic Society, 69(1): 1-6, (1986).
  • [55] Cleveland, J. J., Bradt, R. C., "Grain size/microcracking relations for pseudobrookite oxides", Journal of the American Ceramic Society, 61(11‐12): 478-481, (1978).
  • [56] Haile, S. M., West, D. L., Campbell, J., “The role of microstructure and processing on the proton conducting properties of gadolinium-doped barium cerate”, Journal of materials research, 13(6): 1576-1595, (1998).
There are 56 citations in total.

Details

Primary Language English
Subjects Solid State Chemistry, Electrical Energy Storage
Journal Section Physics
Authors

Fatih Öksüzoğlu 0000-0003-0869-2606

Osman Murat Özkendir 0000-0002-0810-9938

Şule Ateş 0000-0001-9324-6808

Early Pub Date August 11, 2025
Publication Date September 1, 2025
Submission Date November 21, 2024
Acceptance Date May 21, 2025
Published in Issue Year 2025 Volume: 38 Issue: 3

Cite

APA Öksüzoğlu, F., Özkendir, O. M., & Ateş, Ş. (2025). Preparation and Characterisation of LAITP/PVDF Composite Solid Electrolyte for Lithium Battery. Gazi University Journal of Science, 38(3), 1449-1460. https://doi.org/10.35378/gujs.1589340
AMA Öksüzoğlu F, Özkendir OM, Ateş Ş. Preparation and Characterisation of LAITP/PVDF Composite Solid Electrolyte for Lithium Battery. Gazi University Journal of Science. September 2025;38(3):1449-1460. doi:10.35378/gujs.1589340
Chicago Öksüzoğlu, Fatih, Osman Murat Özkendir, and Şule Ateş. “Preparation and Characterisation of LAITP PVDF Composite Solid Electrolyte for Lithium Battery”. Gazi University Journal of Science 38, no. 3 (September 2025): 1449-60. https://doi.org/10.35378/gujs.1589340.
EndNote Öksüzoğlu F, Özkendir OM, Ateş Ş (September 1, 2025) Preparation and Characterisation of LAITP/PVDF Composite Solid Electrolyte for Lithium Battery. Gazi University Journal of Science 38 3 1449–1460.
IEEE F. Öksüzoğlu, O. M. Özkendir, and Ş. Ateş, “Preparation and Characterisation of LAITP/PVDF Composite Solid Electrolyte for Lithium Battery”, Gazi University Journal of Science, vol. 38, no. 3, pp. 1449–1460, 2025, doi: 10.35378/gujs.1589340.
ISNAD Öksüzoğlu, Fatih et al. “Preparation and Characterisation of LAITP PVDF Composite Solid Electrolyte for Lithium Battery”. Gazi University Journal of Science 38/3 (September2025), 1449-1460. https://doi.org/10.35378/gujs.1589340.
JAMA Öksüzoğlu F, Özkendir OM, Ateş Ş. Preparation and Characterisation of LAITP/PVDF Composite Solid Electrolyte for Lithium Battery. Gazi University Journal of Science. 2025;38:1449–1460.
MLA Öksüzoğlu, Fatih et al. “Preparation and Characterisation of LAITP PVDF Composite Solid Electrolyte for Lithium Battery”. Gazi University Journal of Science, vol. 38, no. 3, 2025, pp. 1449-60, doi:10.35378/gujs.1589340.
Vancouver Öksüzoğlu F, Özkendir OM, Ateş Ş. Preparation and Characterisation of LAITP/PVDF Composite Solid Electrolyte for Lithium Battery. Gazi University Journal of Science. 2025;38(3):1449-60.