Research Article
BibTex RIS Cite

Year 2025, Volume: 38 Issue: 3, 1462 - 1478, 01.09.2025
https://doi.org/10.35378/gujs.1653428

Abstract

References

  • [1] Alexandre, M., and Dubois, P., “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials”, Materials Science and Engineering, 28: 1-63, (2000). DOI: https://doi.org/10.1016/S0927-796X(00)00012-7
  • [2] Ray, S.S., and Okamoto, M., “Polymer/layered silicate nanocomposites: a review from preparation to processing”, Progress in Polymer Science, 28: 1539–1641, (2003). DOI: https://doi.org/10.1016/j.progpolymsci.2003.08.002
  • [3] Sheng, N., “Multiscale Micromechanical Modeling of the Thermal/Mechanical Properties of Polymer/Clay Nanocomposites”, Phd. Thesis, Massachusetts Institute of Technology, Massachusetts, 1-183, (2006)
  • [4] Wang, L., Wang, K., Chen, L., and Zhang, Y., “Preparation, morphology and thermal/mechanical properties of epoxy/nanoclay composite”, Composites: Part A, 37: 1890–1896, (2006). DOI: https://doi.org/10.1016/j.compositesa.2005.12.020
  • [5] Bhatt, C., Swaroop, R., Arya, A., and Sharma, A.L., “Effect of nano-filler on the properties of polymer nanocomposite films of PEO/PAN complexed with NaPF6”, Journal of Materials Science and Engineering B, 5: 11-12, (2015). DOI: https://doi.org/10.17265/2161-6221/2015.11-12.003
  • [6] Kaya, A.U., Guner, S., and Esmer, K., “Effects of solution mixing temperature on dielectric properties of PMMA/pristine bentonite nanocomposites”, Journal of Applied Polymer Science, 131: 39907-39914, (2014). DOI: https://doi.org/10.1002/app.39907
  • [7] Mansur, H.S., Sadahira, C.M., Souza, A.N., and Mansur, A.P., “FTIR spectroscopy characterization of poly(vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde”, Materials Science and Engineering C, 28: 539–548, (2008). DOI: https://doi.org/10.1016/j.msec.2007.10.088
  • [8] Mohamed, A.T., “Thermal experimental verification on effects of nanoparticles for enhancing electric and dielectric performance of polyvinyl chloride”, Measurement, 89: 28–33, (2016). DOI: https://doi.org/10.1016/j.measurement.2016.04.002
  • [9] Rozik, N.N., Abd-El Messieh, L.L., and Abd-El Nour, K.N., “The effect of modified pluronic on the distribution of fillers in the polyvinyl chloride matrix”, Journal of Applied Polymer Science, 115: 1732–1741, (2010). DOI: https://doi.org/10.1002/app.31217
  • [10] Silva, T.F., Soares, B.G., Ferreire, S.C., and Sebastian, L., “Silylated montmorillonite as nanofillers for plasticized PVC nanocomposites: Effect of the plasticizer”, Applied Clay Science, 99: 93–99, (2014). DOI: https://doi.org/10.1016/j.clay.2014.06.017
  • [11] Gouda, O.E., Darwish, M.M.F., Thabet, A., Lehtonen, M., and Osman, G.F.A., “Enhancement of the underground cable current capacity by using nano-dielectrics”, Energy Science and Engineering, 12: 3647–3662, (2024). DOI: https://doi.org/10.1002/ese3.1822
  • [12] Akar, Y., and Kaya, A.U., “Investigation of structural, thermal and dielectric properties of PVA/Na-Bentonite composites”, Journal of the Faculty of Engineering and Architecture of Gazi University, 40: 287-295, (2025). DOI: https://doi.org/10.17341/gazimmfd.1401676
  • [13] Wilson, M.J., Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, 1st ed., Springer, Dordrecht, (1994).
  • [14] Madejova, J., “FTIR techniques in clay mineral studies”, Vibrational Spectroscopy, 31: 1–10, (2003). DOI: https://doi.org/10.1016/S0924-2031(02)00065-6
  • [15] Kumari, N., Mohan, C., and Negi, A., “An investigative study on the structural, thermal and mechanical properties of clay-based PVC polymer composite films”, Polymers, 15: 1922-1937, (2023). DOI: https://doi.org/10.3390/polym15081922
  • [16] Erdem, M., Ortac, K., Erdem, B., and Turk, H., “Reaktif organobentonit katkilarin sert poliuretan kopugun bazi performans ozellikleri uzerine etkisi”, Journal of the Faculty of Engineering and Architecture of Gazi University, 32: 1209-1219, (2017). DOI: https://doi.org/10.17341/gazimmfd.369543
  • [17] Shanmugharaj, A.M., Rhee, K.Y., and Ryu, S.H., “Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials”, Journal of Colloid and Interface Science, 298: 854–859, (2006). DOI: https://doi.org/10.1016/j.jcis.2005.12.049
  • [18] Chuajiw, W., Nakano, M., Takatori, K., Kojima, T., Wakimoto, Y., and Fukushima, Y., “Effects of amine, amine salt and amide on the behaviour of carbon dioxide absorption into calcium hydroxide suspension to precipitate calcium carbonate”, Journal of Environmental Sciences, 25: 2507–2515, (2013). DOI: https://doi.org/10.1016/S1001-0742(12)60284-8
  • [19] Branca, C., D’Angelo, G., Crupi, C., Khouzami, K., Rifici, S., Ruello, G., and Wanderlingh, U., “Role of the OH and NH vibrational groups in polysaccharide nanocomposite interactions: A FTIR-ATR study on chitosan and chitosan/clay films”, Polymer, 99: 614-622, (2016). DOI: https://doi.org/10.1016/j.polymer.2016.07.086
  • [20] Czako, E., Vymazal, Z., Volka, K., Stibor, I., and Stepek, J., “Effect of stabilizers in the thermal treatment of PVC-VI. An I.R. spectroscopic study of the stabilization of PVC with Ba and Cd stearates”, European Polymer Journal, 15: 81-85, (1979). DOI: https://doi.org/10.1016/0014-3057(79)90253-2
  • [21] Efimov, A.M., and Pogareva, V.G., “IR absorption spectra of vitreous silica and silicate glasses: The nature of bands in the 1300 to 5000 cm-1 region”, Chemical Geology, 229: 198–217, (2006). DOI: https://doi.org/10.1016/j.chemgeo.2006.01.022
  • [22] Kotal, M., and Bhowmick, A.K., “Polymer nanocomposites from modified clays: Recent advances and challenges”, Progress in Polymer Science, 51: 127–187, (2015). DOI: https://doi.org/10.1016/j.progpolymsci.2015.10.001
  • [23] Gong, F., Feng, F., Zhao, C., Zhang, S., and Yang, M., “Thermal properties of poly(vinyl chloride)/montmorillonite nanocomposites”, Polymer Degradation and Stability 84: (2004) 289-294 (2004). DOI: https://doi.org/10.1016/j.polymdegradstab.2003.11.003
  • [24] Zhu, R., Zhu, J., Ge, F., and Yuan, P., “Regeneration of spent organoclays after the sorption of organic pollutants: A review”, Journal of Environmental Management, 90: 3212–3216, (2009). DOI: https://doi.org/10.1016/j.jenvman.2009.06.015
  • [25] Li, M., Wu, Z., and Ge, F., “A review of intercalation composite phase change material: Preparation, structure and properties”, Renewable and Sustainable Energy Reviews, 16: 2094-2101, (2012). DOI: https://doi.org/10.1016/j.rser.2012.01.016
  • [26] Tournassat, C., Bizi, M., Braibant, G., and Crouzet, C., “Influence of montmorillonite tactoid size on Na-Ca cation exchange reactions”, Journal of Colloid and Interface Science, 15: 443–454, (2011). DOI: https://doi.org/10.1016/j.jcis.2011.07.039
  • [27] Elashmawi, I.S., Elsayed, N.H., and Altalhi, F.A., “The changes of spectroscopic, thermal and electrical properties of PVDF/PEO containing lithium nanoparticles”, Journal of Alloys and Compounds, 617: 877–883, (2014). DOI: https://doi.org/10.1016/j.jallcom.2014.08.088
  • [28] Chen, R.S., Ahmad, S., and Gan, S., “Characterization of recycled thermoplastics-based nanocomposites: Polymer-clay compatibility, blending procedure, processing condition, and clay content effects”, Composites Part B: Engineering, 131: 87-97, (2017). DOI: https://doi.org/10.1016/j.compositesb.2017.07.057
  • [29] Fal, J., Bulanda, K., Oleksy, M., and Zyla, G., “Effect of bentonite on the electrical properties of a polylactide-based nanocomposite”, Polymers, 16(10): 1372, (2024). DOI: https://doi.org/10.3390/polym16101372
  • [30] El-Khalafy, S.H., Hassanein, M.T., Alaskary, M.M., Ramzy, G.H., and Ali, A.I., “Synthesis, characterization, and dielectric properties of bentonite clay modified with (3-chloropropyl) triethoxysilane and Co(II) porphyrin complex for technological and electronic device applications”, Materials Advances, 6: 1931–1949, (2025). DOI: https: //doi.org/ 10.1039/d4ma00982g

Structural and Dielectric Properties of Pristine Bentonite-PVC Nanocomposites

Year 2025, Volume: 38 Issue: 3, 1462 - 1478, 01.09.2025
https://doi.org/10.35378/gujs.1653428

Abstract

In this study, the structural and dielectric properties of pristine bentonite-PVC (Polyvinyl chloride) nanocomposites were systematically investigated. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses confirmed the partial intercalation of PVC molecules between the bentonite layers and their interaction with surface hydroxyl groups. The dielectric properties of the nanocomposites were examined via impedance spectroscopy over a broad frequency range of 1 Hz–10 MHz. The results revealed that PVC loading significantly influenced dielectric permittivity, dielectric loss, and loss tangent (tan δ). At low frequencies (<1 kHz), the permittivity and dielectric loss values of 25 mg, 35 mg, and 100 mg PVC-loaded nanocomposites were notably higher compared to pristine bentonite, indicating enhanced interfacial polarization. The relaxation frequency of pristine bentonite was determined to be 39 kHz, which shifted to lower frequencies upon polymer loading due to intercalation and surface interactions. Notably, in the 35 mg PVC-loaded nanocomposite, the relaxation frequency decreased to 12 kHz, suggesting stronger polymer-clay interactions. In addition, AC conductivity (σac) analyses were performed and successfully fitted with the Jonscher power law, confirming the dominant role of interfacial polarization and dipolar confinement on charge transport behavior. These findings demonstrate that the dielectric behavior of PVC-bentonite nanocomposites is governed by both intercalation and surface interactions, which modulate charge carrier mobility and polarization mechanisms. The integration of structural (XRD, FTIR) and dielectric (impedance spectroscopy) analyses provides a comprehensive understanding of the impact of polymer loading on the dielectric performance of bentonite-based nanocomposites.

References

  • [1] Alexandre, M., and Dubois, P., “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials”, Materials Science and Engineering, 28: 1-63, (2000). DOI: https://doi.org/10.1016/S0927-796X(00)00012-7
  • [2] Ray, S.S., and Okamoto, M., “Polymer/layered silicate nanocomposites: a review from preparation to processing”, Progress in Polymer Science, 28: 1539–1641, (2003). DOI: https://doi.org/10.1016/j.progpolymsci.2003.08.002
  • [3] Sheng, N., “Multiscale Micromechanical Modeling of the Thermal/Mechanical Properties of Polymer/Clay Nanocomposites”, Phd. Thesis, Massachusetts Institute of Technology, Massachusetts, 1-183, (2006)
  • [4] Wang, L., Wang, K., Chen, L., and Zhang, Y., “Preparation, morphology and thermal/mechanical properties of epoxy/nanoclay composite”, Composites: Part A, 37: 1890–1896, (2006). DOI: https://doi.org/10.1016/j.compositesa.2005.12.020
  • [5] Bhatt, C., Swaroop, R., Arya, A., and Sharma, A.L., “Effect of nano-filler on the properties of polymer nanocomposite films of PEO/PAN complexed with NaPF6”, Journal of Materials Science and Engineering B, 5: 11-12, (2015). DOI: https://doi.org/10.17265/2161-6221/2015.11-12.003
  • [6] Kaya, A.U., Guner, S., and Esmer, K., “Effects of solution mixing temperature on dielectric properties of PMMA/pristine bentonite nanocomposites”, Journal of Applied Polymer Science, 131: 39907-39914, (2014). DOI: https://doi.org/10.1002/app.39907
  • [7] Mansur, H.S., Sadahira, C.M., Souza, A.N., and Mansur, A.P., “FTIR spectroscopy characterization of poly(vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde”, Materials Science and Engineering C, 28: 539–548, (2008). DOI: https://doi.org/10.1016/j.msec.2007.10.088
  • [8] Mohamed, A.T., “Thermal experimental verification on effects of nanoparticles for enhancing electric and dielectric performance of polyvinyl chloride”, Measurement, 89: 28–33, (2016). DOI: https://doi.org/10.1016/j.measurement.2016.04.002
  • [9] Rozik, N.N., Abd-El Messieh, L.L., and Abd-El Nour, K.N., “The effect of modified pluronic on the distribution of fillers in the polyvinyl chloride matrix”, Journal of Applied Polymer Science, 115: 1732–1741, (2010). DOI: https://doi.org/10.1002/app.31217
  • [10] Silva, T.F., Soares, B.G., Ferreire, S.C., and Sebastian, L., “Silylated montmorillonite as nanofillers for plasticized PVC nanocomposites: Effect of the plasticizer”, Applied Clay Science, 99: 93–99, (2014). DOI: https://doi.org/10.1016/j.clay.2014.06.017
  • [11] Gouda, O.E., Darwish, M.M.F., Thabet, A., Lehtonen, M., and Osman, G.F.A., “Enhancement of the underground cable current capacity by using nano-dielectrics”, Energy Science and Engineering, 12: 3647–3662, (2024). DOI: https://doi.org/10.1002/ese3.1822
  • [12] Akar, Y., and Kaya, A.U., “Investigation of structural, thermal and dielectric properties of PVA/Na-Bentonite composites”, Journal of the Faculty of Engineering and Architecture of Gazi University, 40: 287-295, (2025). DOI: https://doi.org/10.17341/gazimmfd.1401676
  • [13] Wilson, M.J., Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, 1st ed., Springer, Dordrecht, (1994).
  • [14] Madejova, J., “FTIR techniques in clay mineral studies”, Vibrational Spectroscopy, 31: 1–10, (2003). DOI: https://doi.org/10.1016/S0924-2031(02)00065-6
  • [15] Kumari, N., Mohan, C., and Negi, A., “An investigative study on the structural, thermal and mechanical properties of clay-based PVC polymer composite films”, Polymers, 15: 1922-1937, (2023). DOI: https://doi.org/10.3390/polym15081922
  • [16] Erdem, M., Ortac, K., Erdem, B., and Turk, H., “Reaktif organobentonit katkilarin sert poliuretan kopugun bazi performans ozellikleri uzerine etkisi”, Journal of the Faculty of Engineering and Architecture of Gazi University, 32: 1209-1219, (2017). DOI: https://doi.org/10.17341/gazimmfd.369543
  • [17] Shanmugharaj, A.M., Rhee, K.Y., and Ryu, S.H., “Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials”, Journal of Colloid and Interface Science, 298: 854–859, (2006). DOI: https://doi.org/10.1016/j.jcis.2005.12.049
  • [18] Chuajiw, W., Nakano, M., Takatori, K., Kojima, T., Wakimoto, Y., and Fukushima, Y., “Effects of amine, amine salt and amide on the behaviour of carbon dioxide absorption into calcium hydroxide suspension to precipitate calcium carbonate”, Journal of Environmental Sciences, 25: 2507–2515, (2013). DOI: https://doi.org/10.1016/S1001-0742(12)60284-8
  • [19] Branca, C., D’Angelo, G., Crupi, C., Khouzami, K., Rifici, S., Ruello, G., and Wanderlingh, U., “Role of the OH and NH vibrational groups in polysaccharide nanocomposite interactions: A FTIR-ATR study on chitosan and chitosan/clay films”, Polymer, 99: 614-622, (2016). DOI: https://doi.org/10.1016/j.polymer.2016.07.086
  • [20] Czako, E., Vymazal, Z., Volka, K., Stibor, I., and Stepek, J., “Effect of stabilizers in the thermal treatment of PVC-VI. An I.R. spectroscopic study of the stabilization of PVC with Ba and Cd stearates”, European Polymer Journal, 15: 81-85, (1979). DOI: https://doi.org/10.1016/0014-3057(79)90253-2
  • [21] Efimov, A.M., and Pogareva, V.G., “IR absorption spectra of vitreous silica and silicate glasses: The nature of bands in the 1300 to 5000 cm-1 region”, Chemical Geology, 229: 198–217, (2006). DOI: https://doi.org/10.1016/j.chemgeo.2006.01.022
  • [22] Kotal, M., and Bhowmick, A.K., “Polymer nanocomposites from modified clays: Recent advances and challenges”, Progress in Polymer Science, 51: 127–187, (2015). DOI: https://doi.org/10.1016/j.progpolymsci.2015.10.001
  • [23] Gong, F., Feng, F., Zhao, C., Zhang, S., and Yang, M., “Thermal properties of poly(vinyl chloride)/montmorillonite nanocomposites”, Polymer Degradation and Stability 84: (2004) 289-294 (2004). DOI: https://doi.org/10.1016/j.polymdegradstab.2003.11.003
  • [24] Zhu, R., Zhu, J., Ge, F., and Yuan, P., “Regeneration of spent organoclays after the sorption of organic pollutants: A review”, Journal of Environmental Management, 90: 3212–3216, (2009). DOI: https://doi.org/10.1016/j.jenvman.2009.06.015
  • [25] Li, M., Wu, Z., and Ge, F., “A review of intercalation composite phase change material: Preparation, structure and properties”, Renewable and Sustainable Energy Reviews, 16: 2094-2101, (2012). DOI: https://doi.org/10.1016/j.rser.2012.01.016
  • [26] Tournassat, C., Bizi, M., Braibant, G., and Crouzet, C., “Influence of montmorillonite tactoid size on Na-Ca cation exchange reactions”, Journal of Colloid and Interface Science, 15: 443–454, (2011). DOI: https://doi.org/10.1016/j.jcis.2011.07.039
  • [27] Elashmawi, I.S., Elsayed, N.H., and Altalhi, F.A., “The changes of spectroscopic, thermal and electrical properties of PVDF/PEO containing lithium nanoparticles”, Journal of Alloys and Compounds, 617: 877–883, (2014). DOI: https://doi.org/10.1016/j.jallcom.2014.08.088
  • [28] Chen, R.S., Ahmad, S., and Gan, S., “Characterization of recycled thermoplastics-based nanocomposites: Polymer-clay compatibility, blending procedure, processing condition, and clay content effects”, Composites Part B: Engineering, 131: 87-97, (2017). DOI: https://doi.org/10.1016/j.compositesb.2017.07.057
  • [29] Fal, J., Bulanda, K., Oleksy, M., and Zyla, G., “Effect of bentonite on the electrical properties of a polylactide-based nanocomposite”, Polymers, 16(10): 1372, (2024). DOI: https://doi.org/10.3390/polym16101372
  • [30] El-Khalafy, S.H., Hassanein, M.T., Alaskary, M.M., Ramzy, G.H., and Ali, A.I., “Synthesis, characterization, and dielectric properties of bentonite clay modified with (3-chloropropyl) triethoxysilane and Co(II) porphyrin complex for technological and electronic device applications”, Materials Advances, 6: 1931–1949, (2025). DOI: https: //doi.org/ 10.1039/d4ma00982g
There are 30 citations in total.

Details

Primary Language English
Subjects Material Physics, Structural Properties of Condensed Matter, Composite and Hybrid Materials
Journal Section Physics
Authors

Ahmet Uğur Kaya 0000-0003-4867-3135

Early Pub Date May 18, 2025
Publication Date September 1, 2025
Submission Date March 7, 2025
Acceptance Date April 24, 2025
Published in Issue Year 2025 Volume: 38 Issue: 3

Cite

APA Kaya, A. U. (2025). Structural and Dielectric Properties of Pristine Bentonite-PVC Nanocomposites. Gazi University Journal of Science, 38(3), 1462-1478. https://doi.org/10.35378/gujs.1653428
AMA Kaya AU. Structural and Dielectric Properties of Pristine Bentonite-PVC Nanocomposites. Gazi University Journal of Science. September 2025;38(3):1462-1478. doi:10.35378/gujs.1653428
Chicago Kaya, Ahmet Uğur. “Structural and Dielectric Properties of Pristine Bentonite-PVC Nanocomposites”. Gazi University Journal of Science 38, no. 3 (September 2025): 1462-78. https://doi.org/10.35378/gujs.1653428.
EndNote Kaya AU (September 1, 2025) Structural and Dielectric Properties of Pristine Bentonite-PVC Nanocomposites. Gazi University Journal of Science 38 3 1462–1478.
IEEE A. U. Kaya, “Structural and Dielectric Properties of Pristine Bentonite-PVC Nanocomposites”, Gazi University Journal of Science, vol. 38, no. 3, pp. 1462–1478, 2025, doi: 10.35378/gujs.1653428.
ISNAD Kaya, Ahmet Uğur. “Structural and Dielectric Properties of Pristine Bentonite-PVC Nanocomposites”. Gazi University Journal of Science 38/3 (September2025), 1462-1478. https://doi.org/10.35378/gujs.1653428.
JAMA Kaya AU. Structural and Dielectric Properties of Pristine Bentonite-PVC Nanocomposites. Gazi University Journal of Science. 2025;38:1462–1478.
MLA Kaya, Ahmet Uğur. “Structural and Dielectric Properties of Pristine Bentonite-PVC Nanocomposites”. Gazi University Journal of Science, vol. 38, no. 3, 2025, pp. 1462-78, doi:10.35378/gujs.1653428.
Vancouver Kaya AU. Structural and Dielectric Properties of Pristine Bentonite-PVC Nanocomposites. Gazi University Journal of Science. 2025;38(3):1462-78.