In a sampling study, the complete information for the necessary variables may not always be available in practice. Therefore, the non-response situation has been considered for estimating the unknown population parameters with different types of estimators. The families of estimators are proposed for the population mean in the case of non-response under two different cases with the approach of an exponential function. Their properties are derived in detail. We compare these estimators with the main estimators in the literature to present the efficiencies, theoretically. Moreover, the three different empirical studies are illustrated and, in that way, we found that the theoretical conclusion is supported by the obtained results numerically for each data set.
Ahmad, S., Arslan, M., Khan, A., & Shabbir, J. (2021). A generalized exponential-type estimator for population mean using auxiliary attributes. Plos One, 16(5), e0246947. https://www.doi.org/10.1371/journal.pone.0246947
Ahmad, S., Hussain, S., Aamir, M., Khan, F., Alshahrani, M. N., & Alqawba, M. (2022). Estimation of finite population mean using dual auxiliary variable for non-response using simple random sampling. Aims Mathematics, 793, 4592-4613. https://www.doi.org/10.3934/math.2022256
Ahmadini, A. A. H., Yadav, T., Yadav, S. K., & Al Luhayb, A. S. M. (2022). Restructured searls family of estimators of population mean in the presence of nonresponse. Frontiers in Applied Mathematics and Statistics, 8, 969068. https://www.doi.org/10.3389/fams.2022.969068
Anieting, A. E., Enang, E. I., & Onwukwe, C. E. (2020). Efficient estimator for Population mean in stratified double sampling in the presence of nonresponse using one auxiliary variable. Statistics, 4(2), 40-50. https://www.doi.org/10.52589/AJMSS-YF4V11QV
Bahl, S., & Tuteja, R. K. (1991). Ratio and product type exponential estimators. Journal of Information and Optimization Sciences, 12(1), 159-164. https://www.doi.org/10.1080/02522667.1991.10699058
Cochran, W. G. (1940). The estimation of the yields of the cereal experiments by sampling for the ratio of grain to total produce. The Journal of Agricultural Science, 30(2), 262-275. https://www.doi.org/10.1017/S0021859600048012
Cochran, W. G. (1977) Sampling Techniques. John Wiley and Sons, New-York
Dansawad, N. (2019). A class of exponential estimator to estimate the population mean in the presence of non-response. Naresuan University Journal: Science and Technology, 27(4), 20-26. https://www.doi.org/10.14456/nujst.2019.33
Fatima, M., Shahbaz, S. H., Hanif, M., & Shahbaz, M. Q. (2022). A modified regression-cum-ratio estimator for finite population mean in presence of nonresponse using ranked set sampling. AIMS Mathematics, 7(4), 6478-6488. https://www.doi.org/10.3934/math.2022361
Hansen, M. H., & Hurwitz, W. N. (1946). The problem of non-response in sample surveys. Journal of the American Statistical Association, 41(236), 517-529. https://www.doi.org/10.1080/01621459.1946.10501894
Javed, M., Irfan, M., & Pang, T. (2019). Hartley-Ross type unbiased estimators of population mean using two auxiliary variables. Scientia Iranica, 26(6), 3835-3845. https://www.doi.org/10.24200/sci.2018.5648.1397
Khare, B. B., & Sinha, R. R. (2009). On class of estimators for population mean using multi-auxiliary characters in the presence of non-response. Statistics in Transition, 10(1), 3-14.
Khare, B. B., & Srivastava, S. (1993). Estimation of population mean using auxiliary character in presence of non-response. National Academy Science Letters, 16, 111-114.
Khan, A., Ali, A., Ijaz, M., Azeem, M., & El-Morshedy, M. (2023). An exponential ratio type estimator of the population mean in the presence of non-response using double sampling. Journal of Statistics Applications and Probability, 12(1), 191-205. https://www.doi.org/10.18576/jsap/120118
Khoshnevisan, M., Singh, R., Chauhan, P., Sawan, N., & Smarandache, F. (2007). A general family of estimators for estimating population mean using known value of some population parameter(s). Far East Journal of Theoretical Statistics, 22, 181-191.
Kumar, S. (2013). Improved exponential estimator for estimating the population mean in the presence of non-response. Communications for Statistical Applications and Methods, 20(5), 357-366. https://www.doi.org/10.5351/CSAM.2013.20.5.357
Kumar, S, & Bhougal, S. (2011). Estimation of the population mean in presence of non-response. Communications for Statistical Applications and Methods, 18(4), 537-548. https://www.doi.org/10.5351/CKSS.2011.18.4.537
Kumar, K., & Kumar, M. (2017). Improved exponential ratio and product type estimators for population mean in the presence of nonresponse. Bulletin of Mathematics and Statistics Research, 5(2), 68-76.
Mehta, P., & Tailor, R. (2020). Chain ratio type estimators using known parameters of auxiliary variates in double sampling. Journal of Reliability and Statistical Studies, 13(2-4), 243-252. https://www.doi.org/10.13052/jrss0974-8024.13242
Oncel Cekim, H., & Kadilar, C. (2018). New families of unbiased estimators in stratified random sampling. Journal of Statistics and Management Systems, 21(8), 1481-1499. https://www.doi.org/10.1080/09720510.2018.1530176
Oncel Cekim, H. (2022). Modified unbiased estimators for population variance: An application for COVID‐19 deaths in Russia. Concurrency and Computation: Practice and Experience, 34(22), e7169. https://www.doi.org/10.1002/cpe.7169
Özel Kadilar, G. (2016). A new exponential type estimator for the population mean in simple random sampling. Journal of Modern Applied Statistical Methods, 15(2), 207-214. http://www.doi.org/10.22237/jmasm/1478002380
Pal, S. K., & Singh, H. P. (2017). A class of ratio-cum-ratio-type exponential estimators for population mean with sub sampling the nonrespondents. Jordan Journal of Mathematics and Statistics, 10(1), 73-94.
Pal, S. K., & Singh, H. P. (2018). Estimation of finite population mean using auxiliary information in presence of non-response. Communications in Statistics-Simulation and Computation, 47(1), 143-165. https://www.doi.org/10.1080/03610918.2017.1280161
Rao, P. S. R. S. (1986). Ratio estimation with sub sampling the non-respondents. Survey Methodology, 12(2), 217-230.
Rehman, S. A., & Shabbir, J. (2022). An efficient class of estimators for finite population mean in the presence of non-response under ranked set sampling (RSS). Plos One, 17(12), e0277232. https://www.doi.org/10.1371/journal.pone.0277232
Sanaullah, A., Ehsan, I., & Noor-Ul-Amin, M. (2019). Estimation of mean for a finite population using sub-sampling of non-respondents. Journal of Statistics and Management Systems, 22(6), 1015-1035. https://www.doi.org/10.1080/09720510.2019.1572981
Satici, E., & Kadilar, C. (2011). Ratio estimator for the population mean at the current occasion in the presence of non-response in successive sampling. Hacettepe Journal of Mathematics and Statistics, 40(1), 115-124.
Shabbir, J., Haq, A., & Gupta, S. (2014). A new difference-cum-exponential type estimator of finite population mean in simple random sampling. Revista Colombiana de Estadística, 37(1), 199-211. https://www.doi.org/10.15446/rce.v37n1.44366
Shabbir, J., & Onyango, R. (2022). Use of an efficient unbiased estimator for finite population mean. Plos One, 17(7), e0270277. https://www.doi.org/10.1371/journal.pone.0270277
Sharma, P., Pal, S. K., & Singh, H. P. (2022). Improved estimators of population mean under nonresponse in successive sampling. Mathematical Problems in Engineering, 2022(1), 1-8. https://www.doi.org/10.1155/2022/1349689
Singh, R., Chauhan, P., & Sawan, N. (2008). On linear combination of ratio and product type exponential estimator for estimating the finite population mean. Statistics in Transition - New Series, 9, 105-115.
Singh, R., Kumar, M., Chaudhary, M. K., & Smarandache, F. (2010). Estimation of mean in presence of non-response using exponential estimator. Multispace & Multistructure Neutrosophic Transdisciplinarity (100 Collected Papers of Sciences), (vol IV, pp. 758-768). https://doi.org/10.48550/arXiv.0906.2462
Singh, H. P., & Nigam, P. (2020). Ratio-Ratio-Type exponential estimator of finite population mean in double sampling for stratification. International Journal of Agricultural and Statistical Science, 16(1), 251-257.
Singh, G. N., & Usman, M. (2019a). Ratio-to-product exponential-type estimators under non-response. Jordan Journal of Mathematics and Statistics, 12(4), 593-616.
Singh, G. N., & Usman, M. (2019b). Efficient combination of various estimators in the presence of non-response. Communications in Statistics Simulation and Computation, 50(8), 2432-2466. https://www.doi.org/10.1080/03610918.2019.1614618
Tailor, R., & Lone, H. A. (2014). Separate ratio-type estimators of population mean in stratified random sampling. Journal of Modern Applied Statistical Methods, 13(1), 223-233. https://www.doi.org/10.22237/jmasm/1398917580
Unal, C., & Kadilar, C. (2019). Exponential type estimator for the population mean in the presence of non-response. Journal of Statistics and Management Systems, 23(3), 603-615. https://www.doi.org/10.1080/09720510.2019.1668158
Unal, C., & Kadilar, C. (2021). Improved family of estimators using exponential function for the population mean in the presence of nonresponse. Communications in Statistics - Theory and Methods, 50(1), 237-248. https://www.doi.org/10.1080/03610926.2019.1634818
Unal, C., & Kadilar, C. (2022a). A new population mean estimator under non-response cases. Journal of Taibah University for Science, 16(1), 111-119. https://www.doi.org/10.1080/16583655.2022.2034343
Unal, C., & Kadilar, C. (2022b). Exponential type estimators using sub-sampling method with applications in agriculture. Journal of Agricultural Sciences (Tarim Bilimleri Dergisi), 28(3), 457-472. https://www.doi.org/10.15832/ankutbd.915999
Yadav, S. K., Sharma, D. K., & Mishra, S. S. (2021). New modified ratio type estimator of the population mean using the known median of the study variable. International Journal of Operational Research, 41(2), 151-167. https://www.doi.org/10.1504/IJOR.2021.115625
Yadav, S. K., & Zaman, T. (2021). Use of some conventional and non-conventional parameters for improving the efficiency of ratio-type estimators. Journal of Statistics and Management Systems, 24(5), 1077-1100. https://www.doi.org/10.1080/09720510.2020.1864939
Yunusa, O., & Kumar, S. (2014). Ratio-cum-product estimator using exponential estimator in the presence of non-response. Journal of Advanced Computing, 3(1), 1-11. https://www.doi.org/10.7726/jac.2014.1001
Zahid, S., Kamal, A., & Makhdum, M. (2022). Generalized Dual to Exponential Ratio Type Estimator for the Finite Population Mean in the Presence of Nonresponse. In: O. O. Awe, K. Love, & E. A. Vance (Eds.), Promoting Statistical Practice and Collaboration in Developing Countries (2nd ed., pp. 249-263). Chapman and Hall/CRC. https://www.doi.org/10.1201/9781003261148
Zaman, T., & Kadilar, C. (2019). Novel family of exponential estimators using information of auxiliary attribute. Journal of Statistics and Management Systems, 22(8), 1499-1509. https://www.doi.org/10.1080/09720510.2019.1621488
Zaman, T., & Kadilar, C. (2021a). Exponential ratio and product type estimators of the mean in stratified two-phase sampling. AIMS Mathematics, 6(5), 4265-4279. https://www.doi.org/10.3934/math.2021252
Zaman, T., & Kadilar, C. (2021b). New class of exponential estimators for finite population mean in two-phase sampling. Communications in Statistics-Theory and Methods, 50(4), 874-889. https://www.doi.org/10.1080/03610926.2019.1643480
Ahmad, S., Arslan, M., Khan, A., & Shabbir, J. (2021). A generalized exponential-type estimator for population mean using auxiliary attributes. Plos One, 16(5), e0246947. https://www.doi.org/10.1371/journal.pone.0246947
Ahmad, S., Hussain, S., Aamir, M., Khan, F., Alshahrani, M. N., & Alqawba, M. (2022). Estimation of finite population mean using dual auxiliary variable for non-response using simple random sampling. Aims Mathematics, 793, 4592-4613. https://www.doi.org/10.3934/math.2022256
Ahmadini, A. A. H., Yadav, T., Yadav, S. K., & Al Luhayb, A. S. M. (2022). Restructured searls family of estimators of population mean in the presence of nonresponse. Frontiers in Applied Mathematics and Statistics, 8, 969068. https://www.doi.org/10.3389/fams.2022.969068
Anieting, A. E., Enang, E. I., & Onwukwe, C. E. (2020). Efficient estimator for Population mean in stratified double sampling in the presence of nonresponse using one auxiliary variable. Statistics, 4(2), 40-50. https://www.doi.org/10.52589/AJMSS-YF4V11QV
Bahl, S., & Tuteja, R. K. (1991). Ratio and product type exponential estimators. Journal of Information and Optimization Sciences, 12(1), 159-164. https://www.doi.org/10.1080/02522667.1991.10699058
Cochran, W. G. (1940). The estimation of the yields of the cereal experiments by sampling for the ratio of grain to total produce. The Journal of Agricultural Science, 30(2), 262-275. https://www.doi.org/10.1017/S0021859600048012
Cochran, W. G. (1977) Sampling Techniques. John Wiley and Sons, New-York
Dansawad, N. (2019). A class of exponential estimator to estimate the population mean in the presence of non-response. Naresuan University Journal: Science and Technology, 27(4), 20-26. https://www.doi.org/10.14456/nujst.2019.33
Fatima, M., Shahbaz, S. H., Hanif, M., & Shahbaz, M. Q. (2022). A modified regression-cum-ratio estimator for finite population mean in presence of nonresponse using ranked set sampling. AIMS Mathematics, 7(4), 6478-6488. https://www.doi.org/10.3934/math.2022361
Hansen, M. H., & Hurwitz, W. N. (1946). The problem of non-response in sample surveys. Journal of the American Statistical Association, 41(236), 517-529. https://www.doi.org/10.1080/01621459.1946.10501894
Javed, M., Irfan, M., & Pang, T. (2019). Hartley-Ross type unbiased estimators of population mean using two auxiliary variables. Scientia Iranica, 26(6), 3835-3845. https://www.doi.org/10.24200/sci.2018.5648.1397
Khare, B. B., & Sinha, R. R. (2009). On class of estimators for population mean using multi-auxiliary characters in the presence of non-response. Statistics in Transition, 10(1), 3-14.
Khare, B. B., & Srivastava, S. (1993). Estimation of population mean using auxiliary character in presence of non-response. National Academy Science Letters, 16, 111-114.
Khan, A., Ali, A., Ijaz, M., Azeem, M., & El-Morshedy, M. (2023). An exponential ratio type estimator of the population mean in the presence of non-response using double sampling. Journal of Statistics Applications and Probability, 12(1), 191-205. https://www.doi.org/10.18576/jsap/120118
Khoshnevisan, M., Singh, R., Chauhan, P., Sawan, N., & Smarandache, F. (2007). A general family of estimators for estimating population mean using known value of some population parameter(s). Far East Journal of Theoretical Statistics, 22, 181-191.
Kumar, S. (2013). Improved exponential estimator for estimating the population mean in the presence of non-response. Communications for Statistical Applications and Methods, 20(5), 357-366. https://www.doi.org/10.5351/CSAM.2013.20.5.357
Kumar, S, & Bhougal, S. (2011). Estimation of the population mean in presence of non-response. Communications for Statistical Applications and Methods, 18(4), 537-548. https://www.doi.org/10.5351/CKSS.2011.18.4.537
Kumar, K., & Kumar, M. (2017). Improved exponential ratio and product type estimators for population mean in the presence of nonresponse. Bulletin of Mathematics and Statistics Research, 5(2), 68-76.
Mehta, P., & Tailor, R. (2020). Chain ratio type estimators using known parameters of auxiliary variates in double sampling. Journal of Reliability and Statistical Studies, 13(2-4), 243-252. https://www.doi.org/10.13052/jrss0974-8024.13242
Oncel Cekim, H., & Kadilar, C. (2018). New families of unbiased estimators in stratified random sampling. Journal of Statistics and Management Systems, 21(8), 1481-1499. https://www.doi.org/10.1080/09720510.2018.1530176
Oncel Cekim, H. (2022). Modified unbiased estimators for population variance: An application for COVID‐19 deaths in Russia. Concurrency and Computation: Practice and Experience, 34(22), e7169. https://www.doi.org/10.1002/cpe.7169
Özel Kadilar, G. (2016). A new exponential type estimator for the population mean in simple random sampling. Journal of Modern Applied Statistical Methods, 15(2), 207-214. http://www.doi.org/10.22237/jmasm/1478002380
Pal, S. K., & Singh, H. P. (2017). A class of ratio-cum-ratio-type exponential estimators for population mean with sub sampling the nonrespondents. Jordan Journal of Mathematics and Statistics, 10(1), 73-94.
Pal, S. K., & Singh, H. P. (2018). Estimation of finite population mean using auxiliary information in presence of non-response. Communications in Statistics-Simulation and Computation, 47(1), 143-165. https://www.doi.org/10.1080/03610918.2017.1280161
Rao, P. S. R. S. (1986). Ratio estimation with sub sampling the non-respondents. Survey Methodology, 12(2), 217-230.
Rehman, S. A., & Shabbir, J. (2022). An efficient class of estimators for finite population mean in the presence of non-response under ranked set sampling (RSS). Plos One, 17(12), e0277232. https://www.doi.org/10.1371/journal.pone.0277232
Sanaullah, A., Ehsan, I., & Noor-Ul-Amin, M. (2019). Estimation of mean for a finite population using sub-sampling of non-respondents. Journal of Statistics and Management Systems, 22(6), 1015-1035. https://www.doi.org/10.1080/09720510.2019.1572981
Satici, E., & Kadilar, C. (2011). Ratio estimator for the population mean at the current occasion in the presence of non-response in successive sampling. Hacettepe Journal of Mathematics and Statistics, 40(1), 115-124.
Shabbir, J., Haq, A., & Gupta, S. (2014). A new difference-cum-exponential type estimator of finite population mean in simple random sampling. Revista Colombiana de Estadística, 37(1), 199-211. https://www.doi.org/10.15446/rce.v37n1.44366
Shabbir, J., & Onyango, R. (2022). Use of an efficient unbiased estimator for finite population mean. Plos One, 17(7), e0270277. https://www.doi.org/10.1371/journal.pone.0270277
Sharma, P., Pal, S. K., & Singh, H. P. (2022). Improved estimators of population mean under nonresponse in successive sampling. Mathematical Problems in Engineering, 2022(1), 1-8. https://www.doi.org/10.1155/2022/1349689
Singh, R., Chauhan, P., & Sawan, N. (2008). On linear combination of ratio and product type exponential estimator for estimating the finite population mean. Statistics in Transition - New Series, 9, 105-115.
Singh, R., Kumar, M., Chaudhary, M. K., & Smarandache, F. (2010). Estimation of mean in presence of non-response using exponential estimator. Multispace & Multistructure Neutrosophic Transdisciplinarity (100 Collected Papers of Sciences), (vol IV, pp. 758-768). https://doi.org/10.48550/arXiv.0906.2462
Singh, H. P., & Nigam, P. (2020). Ratio-Ratio-Type exponential estimator of finite population mean in double sampling for stratification. International Journal of Agricultural and Statistical Science, 16(1), 251-257.
Singh, G. N., & Usman, M. (2019a). Ratio-to-product exponential-type estimators under non-response. Jordan Journal of Mathematics and Statistics, 12(4), 593-616.
Singh, G. N., & Usman, M. (2019b). Efficient combination of various estimators in the presence of non-response. Communications in Statistics Simulation and Computation, 50(8), 2432-2466. https://www.doi.org/10.1080/03610918.2019.1614618
Tailor, R., & Lone, H. A. (2014). Separate ratio-type estimators of population mean in stratified random sampling. Journal of Modern Applied Statistical Methods, 13(1), 223-233. https://www.doi.org/10.22237/jmasm/1398917580
Unal, C., & Kadilar, C. (2019). Exponential type estimator for the population mean in the presence of non-response. Journal of Statistics and Management Systems, 23(3), 603-615. https://www.doi.org/10.1080/09720510.2019.1668158
Unal, C., & Kadilar, C. (2021). Improved family of estimators using exponential function for the population mean in the presence of nonresponse. Communications in Statistics - Theory and Methods, 50(1), 237-248. https://www.doi.org/10.1080/03610926.2019.1634818
Unal, C., & Kadilar, C. (2022a). A new population mean estimator under non-response cases. Journal of Taibah University for Science, 16(1), 111-119. https://www.doi.org/10.1080/16583655.2022.2034343
Unal, C., & Kadilar, C. (2022b). Exponential type estimators using sub-sampling method with applications in agriculture. Journal of Agricultural Sciences (Tarim Bilimleri Dergisi), 28(3), 457-472. https://www.doi.org/10.15832/ankutbd.915999
Yadav, S. K., Sharma, D. K., & Mishra, S. S. (2021). New modified ratio type estimator of the population mean using the known median of the study variable. International Journal of Operational Research, 41(2), 151-167. https://www.doi.org/10.1504/IJOR.2021.115625
Yadav, S. K., & Zaman, T. (2021). Use of some conventional and non-conventional parameters for improving the efficiency of ratio-type estimators. Journal of Statistics and Management Systems, 24(5), 1077-1100. https://www.doi.org/10.1080/09720510.2020.1864939
Yunusa, O., & Kumar, S. (2014). Ratio-cum-product estimator using exponential estimator in the presence of non-response. Journal of Advanced Computing, 3(1), 1-11. https://www.doi.org/10.7726/jac.2014.1001
Zahid, S., Kamal, A., & Makhdum, M. (2022). Generalized Dual to Exponential Ratio Type Estimator for the Finite Population Mean in the Presence of Nonresponse. In: O. O. Awe, K. Love, & E. A. Vance (Eds.), Promoting Statistical Practice and Collaboration in Developing Countries (2nd ed., pp. 249-263). Chapman and Hall/CRC. https://www.doi.org/10.1201/9781003261148
Zaman, T., & Kadilar, C. (2019). Novel family of exponential estimators using information of auxiliary attribute. Journal of Statistics and Management Systems, 22(8), 1499-1509. https://www.doi.org/10.1080/09720510.2019.1621488
Zaman, T., & Kadilar, C. (2021a). Exponential ratio and product type estimators of the mean in stratified two-phase sampling. AIMS Mathematics, 6(5), 4265-4279. https://www.doi.org/10.3934/math.2021252
Zaman, T., & Kadilar, C. (2021b). New class of exponential estimators for finite population mean in two-phase sampling. Communications in Statistics-Theory and Methods, 50(4), 874-889. https://www.doi.org/10.1080/03610926.2019.1643480
Ünal, C., & Kadılar, C. (2023). An Improvement in Estimating the Population Mean Based on Family of Estimators with Different Application Areas. Gazi University Journal of Science Part A: Engineering and Innovation, 10(4), 402-416. https://doi.org/10.54287/gujsa.1333067