Research Article
BibTex RIS Cite

Year 2025, Volume: 12 Issue: 4, 1044 - 1059, 31.12.2025
https://doi.org/10.54287/gujsa.1791582

Abstract

References

  • Attallah, O. (2025). Lung and colon cancer classification using multiscale deep features integration of compact convolutional neural networks and feature selection. Technologies, 13(2), 54. https://doi.org/10.3390/technologies13020054
  • Babu, T., Singh, T., Gupta, D., & Hameed, S. (2021). Colon cancer prediction on histological images using deep learning features and Bayesian optimized SVM. Journal of Intelligent & Fuzzy Systems, 41(5), 5275–5286. https://doi.org/10.3233/JIFS-189850
  • Bala, D., Karim, S. R. U., Rasul, R. A., Joya, S. G., Hossain, M. A., & Zhou, Z. (2025, June 27-28). Mranet: a modified residual attention networks for lung and colon cancer classification. In: 2025 2nd International Conference on Next-Generation Computing, IoT and Machine Learning (NCIM) (pp. 1-6). Gazipur, Bangladesh. https://doi.org/10.1109/NCIM65934.2025.11159908
  • Borkowski, A. A., Bui, M. M., Thomas, L. B., Wilson, C. P., DeLand, L. A., & Mastorides, S. M. (2019). Lung and colon cancer histopathological image dataset (LC25000). https://doi.org/10.48550/arXiv.1912.12142
  • Compton, C. C. (2003). Colorectal carcinoma: Diagnostic, prognostic, and molecular features. Modern Pathology, 16(4), 376–388. https://doi.org/10.1097/01.MP.0000062859.46942.93
  • Dekker, E., Tanis, P. J., Vleugels, J. L., Kasi, P. M., & Wallace, M. (2019). Colorectal cancer. The Lancet, 394(10207), 1467–1480. https://doi.org/10.1016/S0140-6736(19)32319-0
  • Ft, B. (2010). WHO classification of tumors of the digestive system. Adenocarcinoma of the appendix (pp. 120–125). IARC.
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
  • Hamilton, S. R., & Aaltonen, L. A. (Eds.). (2000). Pathology and genetics of tumours of the digestive system (Vol. 2). IARC Press.
  • Ben Hamida, A., Devanne, M., Weber, J., Truntzer, C., Derangère, V., Ghiringhelli, F., Forestier, G., & Wemmert, C. (2021). Deep learning for colon cancer histopathological images analysis. Computers in Biology and Medicine, 136, 104730. https://doi.org/10.1016/j.compbiomed.2021.104730
  • Keum, N., & Giovannucci, E. (2019). Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nature Reviews Gastroenterology & Hepatology, 16(12), 713–732. https://doi.org/10.1038/s41575-019-0189-8
  • Khan, A. A., Arslan, M., Tanzil, A., Bhatty, R. A., Khalid, M. A. U., & Khan, A. H. (2024). Classification of colon cancer using deep learning techniques on histopathological images. Migration Letters, 21(S11), 449–463.
  • Knowles, C. H., De Giorgio, R., Kapur, R. P., Bruder, E., Farrugia, G., Geboes, K., Gershon, M. D., Hutson, J., Lindberg, G., Martin, J. E., Meier-Ruge, W. A., Milla, P. J., Smith, V. V., Vandervinden, J. M., Veress, B., & Wedel, T. (2009). Gastrointestinal neuromuscular pathology: Guidelines for histological techniques and reporting on behalf of the Gastro 2009 International Working Group. Acta Neuropathologica, 118(2), 271–301. https://doi.org/10.1007/s00401-009-0527-y
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097–1105.
  • Kumar, V. R. P., Arulselvi, M., & Sastry, K. B. S. (2023). Comparative assessment of colon cancer classification using diverse deep learning approaches. Journal of Data Science and Intelligent Systems, 1(2), 128–135.
  • Kumar, A., Vishwakarma, A., & Bajaj, V. (2024). Multi-headed CNN for colon cancer classification using histopathological images with Tikhonov-based unsharp masking. Multimedia Tools and Applications, 83(28), 71753–71772. https://doi.org/10.1007/s11042-024-18357-y
  • Kumar, B. A., & Misra, N. K. (2025). Colon cancer classification and detection by novel CMNV2 model and methods of deep learning. Neural Computing and Applications, 37(1), 25–41. https://doi.org/10.1007/s00521-024-10563-x
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
  • Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
  • Mohamed, A. A. A., Hançerlioğullari, A., Rahebi, J., Rezaeizadeh, R., & Lopez-Guede, J. M. (2024). Colon cancer disease diagnosis based on convolutional neural network and fishier mantis optimizer. Diagnostics, 14(13), 1417. https://doi.org/10.3390/diagnostics14131417
  • Ochoa-Ornelas, R., Gudiño-Ochoa, A., García-Rodríguez, J. A., & Uribe-Toscano, S. (2025). A robust transfer learning approach with histopathological images for lung and colon cancer detection using EfficientNetB3. Healthcare Analytics, 7, 100391. https://doi.org/10.1016/j.health.2025.100391
  • Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359. https://doi.org/10.1109/TKDE.2009.191
  • Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252. https://doi.org/10.1007/s11263-015-0816-y
  • Sarwinda, D., Paradisa, R. H., Bustamam, A., & Anggia, P. (2021). Deep learning in image classification using residual network (ResNet) variants for detection of colorectal cancer. Procedia Computer Science, 179, 423–431. https://doi.org/10.1016/j.procs.2021.01.025
  • Savaş, S., & Güler, O. (2024). Ensemble learning based lung and colon cancer classification with pre-trained deep neural networks. Health and Technology, 15(1), 105-117. https://doi.org/10.1007/s12553-024-00911-1
  • Siegel, R. L., Miller, K. D., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17–48. https://doi.org/10.3322/caac.21763
  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. https://doi.org/10.48550/arXiv.1409.1556
  • Su, Y., Tian, X., Gao, R., Guo, W., Chen, C., Chen, C., Jia, D., Li, H., & Lv, X. (2022). Colon cancer diagnosis and staging classification based on machine learning and bioinformatics analysis. Computers in Biology and Medicine, 145, 105409. https://doi.org/10.1016/j.compbiomed.2022.105409
  • Sinha, S., Mali, S., Borgohain, U., Saikia, U., Chetia, G., Medhi, S. P., Borthakur, D., Aich, J., Mukherjee, G., Ghosh, D., & Sarmah, R. (2024). A machine learning approach for detection and classification of colon cancer using convolutional neural network architecture. Journal of Electrical Systems, 20(7s), 1065–1071. https://doi.org/10.52783/jes.3543
  • WHO, World Health Organization. (2023). Colorectal cancer fact sheet. (Accessed:11/03/2025) https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer

Evaluating CNN Architectures and Transfer Learning for Histopathological Classification of Lung and Colon Cancer

Year 2025, Volume: 12 Issue: 4, 1044 - 1059, 31.12.2025
https://doi.org/10.54287/gujsa.1791582

Abstract

Lung and colon cancers are among the most prevalent and fatal diseases worldwide, characterized by high morbidity and mortality rates. In recent years, several state-of-the-art convolutional neural network (CNN) architectures, including VGG19, ResNet50, InceptionV3, MobileNetV2, and EfficientNet-B4, have demonstrated remarkable performance in histopathological image analysis and cancer classification. Expanding on these developments, this study aims to classify lung and colon cancers based on microscopic pathology images. To this end, six different datasets (A–F) were derived from the publicly available LC25000 dataset. Various data augmentation techniques were applied, and image dimensions were standardized to ensure consistency. Multiple CNN-based models were developed and evaluated to distinguish between three classes of colon and lung cancer. Additionally, the effectiveness of transfer learning approaches was examined due to the limited number of available samples. Experimental results indicated that the EfficientNet-B4 model achieved the highest classification accuracy of 95.08%. However, despite the high accuracy, relatively lower recall, F1-score and precision values in certain cases suggest limitations in the model’s ability to consistently identify positive cases and capture all relevant examples within the dataset. These findings provide valuable insights into the strengths and weaknesses of modern CNN architectures for histopathological cancer classification and emphasize the importance of balancing accuracy with sensitivity and precision in clinical diagnostic applications.

References

  • Attallah, O. (2025). Lung and colon cancer classification using multiscale deep features integration of compact convolutional neural networks and feature selection. Technologies, 13(2), 54. https://doi.org/10.3390/technologies13020054
  • Babu, T., Singh, T., Gupta, D., & Hameed, S. (2021). Colon cancer prediction on histological images using deep learning features and Bayesian optimized SVM. Journal of Intelligent & Fuzzy Systems, 41(5), 5275–5286. https://doi.org/10.3233/JIFS-189850
  • Bala, D., Karim, S. R. U., Rasul, R. A., Joya, S. G., Hossain, M. A., & Zhou, Z. (2025, June 27-28). Mranet: a modified residual attention networks for lung and colon cancer classification. In: 2025 2nd International Conference on Next-Generation Computing, IoT and Machine Learning (NCIM) (pp. 1-6). Gazipur, Bangladesh. https://doi.org/10.1109/NCIM65934.2025.11159908
  • Borkowski, A. A., Bui, M. M., Thomas, L. B., Wilson, C. P., DeLand, L. A., & Mastorides, S. M. (2019). Lung and colon cancer histopathological image dataset (LC25000). https://doi.org/10.48550/arXiv.1912.12142
  • Compton, C. C. (2003). Colorectal carcinoma: Diagnostic, prognostic, and molecular features. Modern Pathology, 16(4), 376–388. https://doi.org/10.1097/01.MP.0000062859.46942.93
  • Dekker, E., Tanis, P. J., Vleugels, J. L., Kasi, P. M., & Wallace, M. (2019). Colorectal cancer. The Lancet, 394(10207), 1467–1480. https://doi.org/10.1016/S0140-6736(19)32319-0
  • Ft, B. (2010). WHO classification of tumors of the digestive system. Adenocarcinoma of the appendix (pp. 120–125). IARC.
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
  • Hamilton, S. R., & Aaltonen, L. A. (Eds.). (2000). Pathology and genetics of tumours of the digestive system (Vol. 2). IARC Press.
  • Ben Hamida, A., Devanne, M., Weber, J., Truntzer, C., Derangère, V., Ghiringhelli, F., Forestier, G., & Wemmert, C. (2021). Deep learning for colon cancer histopathological images analysis. Computers in Biology and Medicine, 136, 104730. https://doi.org/10.1016/j.compbiomed.2021.104730
  • Keum, N., & Giovannucci, E. (2019). Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nature Reviews Gastroenterology & Hepatology, 16(12), 713–732. https://doi.org/10.1038/s41575-019-0189-8
  • Khan, A. A., Arslan, M., Tanzil, A., Bhatty, R. A., Khalid, M. A. U., & Khan, A. H. (2024). Classification of colon cancer using deep learning techniques on histopathological images. Migration Letters, 21(S11), 449–463.
  • Knowles, C. H., De Giorgio, R., Kapur, R. P., Bruder, E., Farrugia, G., Geboes, K., Gershon, M. D., Hutson, J., Lindberg, G., Martin, J. E., Meier-Ruge, W. A., Milla, P. J., Smith, V. V., Vandervinden, J. M., Veress, B., & Wedel, T. (2009). Gastrointestinal neuromuscular pathology: Guidelines for histological techniques and reporting on behalf of the Gastro 2009 International Working Group. Acta Neuropathologica, 118(2), 271–301. https://doi.org/10.1007/s00401-009-0527-y
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097–1105.
  • Kumar, V. R. P., Arulselvi, M., & Sastry, K. B. S. (2023). Comparative assessment of colon cancer classification using diverse deep learning approaches. Journal of Data Science and Intelligent Systems, 1(2), 128–135.
  • Kumar, A., Vishwakarma, A., & Bajaj, V. (2024). Multi-headed CNN for colon cancer classification using histopathological images with Tikhonov-based unsharp masking. Multimedia Tools and Applications, 83(28), 71753–71772. https://doi.org/10.1007/s11042-024-18357-y
  • Kumar, B. A., & Misra, N. K. (2025). Colon cancer classification and detection by novel CMNV2 model and methods of deep learning. Neural Computing and Applications, 37(1), 25–41. https://doi.org/10.1007/s00521-024-10563-x
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
  • Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
  • Mohamed, A. A. A., Hançerlioğullari, A., Rahebi, J., Rezaeizadeh, R., & Lopez-Guede, J. M. (2024). Colon cancer disease diagnosis based on convolutional neural network and fishier mantis optimizer. Diagnostics, 14(13), 1417. https://doi.org/10.3390/diagnostics14131417
  • Ochoa-Ornelas, R., Gudiño-Ochoa, A., García-Rodríguez, J. A., & Uribe-Toscano, S. (2025). A robust transfer learning approach with histopathological images for lung and colon cancer detection using EfficientNetB3. Healthcare Analytics, 7, 100391. https://doi.org/10.1016/j.health.2025.100391
  • Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359. https://doi.org/10.1109/TKDE.2009.191
  • Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252. https://doi.org/10.1007/s11263-015-0816-y
  • Sarwinda, D., Paradisa, R. H., Bustamam, A., & Anggia, P. (2021). Deep learning in image classification using residual network (ResNet) variants for detection of colorectal cancer. Procedia Computer Science, 179, 423–431. https://doi.org/10.1016/j.procs.2021.01.025
  • Savaş, S., & Güler, O. (2024). Ensemble learning based lung and colon cancer classification with pre-trained deep neural networks. Health and Technology, 15(1), 105-117. https://doi.org/10.1007/s12553-024-00911-1
  • Siegel, R. L., Miller, K. D., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17–48. https://doi.org/10.3322/caac.21763
  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. https://doi.org/10.48550/arXiv.1409.1556
  • Su, Y., Tian, X., Gao, R., Guo, W., Chen, C., Chen, C., Jia, D., Li, H., & Lv, X. (2022). Colon cancer diagnosis and staging classification based on machine learning and bioinformatics analysis. Computers in Biology and Medicine, 145, 105409. https://doi.org/10.1016/j.compbiomed.2022.105409
  • Sinha, S., Mali, S., Borgohain, U., Saikia, U., Chetia, G., Medhi, S. P., Borthakur, D., Aich, J., Mukherjee, G., Ghosh, D., & Sarmah, R. (2024). A machine learning approach for detection and classification of colon cancer using convolutional neural network architecture. Journal of Electrical Systems, 20(7s), 1065–1071. https://doi.org/10.52783/jes.3543
  • WHO, World Health Organization. (2023). Colorectal cancer fact sheet. (Accessed:11/03/2025) https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer
There are 30 citations in total.

Details

Primary Language English
Subjects Deep Learning
Journal Section Research Article
Authors

Yasin Özkan 0000-0002-2029-0856

Submission Date September 26, 2025
Acceptance Date November 14, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 12 Issue: 4

Cite

APA Özkan, Y. (2025). Evaluating CNN Architectures and Transfer Learning for Histopathological Classification of Lung and Colon Cancer. Gazi University Journal of Science Part A: Engineering and Innovation, 12(4), 1044-1059. https://doi.org/10.54287/gujsa.1791582