Research Article
BibTex RIS Cite

Effective Approach Based on Slime Mold Algorithm for Hyper-Parameter Tuning of CNNs in Brain Tumor Classification

Year 2025, Volume: 12 Issue: 4, 1187 - 1216, 31.12.2025
https://doi.org/10.54287/gujsa.1822726

Abstract

Research on brain cancer indicates that the severity of the disease varies according to tumor types and their specific characteristics. Accurate identification of tumor locations, extraction of distinctive features, and correct classification are of critical importance. In this study, brain tumors were detected using three different deep learning models developed on a dataset created within the scope of the TBP project and seven additional public datasets. All three models are based on Convolutional Neural Network (CNN) architectures for tumor detection. The first model is a baseline CNN; the second incorporates the Genetic Algorithm (GA), a traditional approach for hyperparameter optimization; and the third combines the CNN with the Slime Mold Algorithm (SMA), a recently proposed metaheuristic technique. Hybrid methods that achieve higher performance than baseline CNNs in binary tumor classification are presented and discussed. Experimental results were comparatively analyzed and visualized through graphs and tables. Compared to other CNN-based studies in the literature, the proposed approach improved accuracy by approximately 1–10%. Similarly, when compared with other machine learning (ML) and deep learning (DL) algorithms, excluding CNNs, performance gains ranged between 1% and 13%. The CNN+SMA model achieved the most consistent and notable improvements across all datasets. Although hybrid models generally require more computational resources due to their complex training structures, they tend to achieve higher accuracy and facilitate parameter optimization more effectively than single-model approaches.

Supporting Institution

This work was carried out within the scope of the Turkish Brain Project (No. 2021-001), supported by the Turkish Presidency Digital Transformation Office (TR-DTO). The authors thank TR-DTO for financial support and Gazi University Medical School Hospital and the Gazi AI R&D Center for providing research facilities. The authors also appreciate the contributions of colleagues from TR-DTO for preliminary infrastructure support.

References

  • Abd-Ellah, M. K., Awad, A. I., Khalaf, A. A., & Hamed, H. F. (2019). A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned. Magnetic Resonance Imaging, 61, 300–318. https://doi.org/10.1016/j.mri.2019.05.028
  • Abiwinanda, N., Hanif, M., Hesaputra, S. T., Handayani, A., & Mengko, T. R. (2018 June 3-8). Brain tumor classification using CNN. In: L Lhotska, L. Sukupova, I. Lacković, G. S. Ibbott (Eds.), World Congress on Medical Physics and Biomedical Engineering 2018 (Vol. 1, pp. 183–189), Prague, Czech Republic. https://doi.org/10.1007/978-981-10-9035-6_33
  • Afshar, P., Mohammadi, A., & Plataniotis, K. N. (2020). BayesCap: A Bayesian approach to brain tumor classification using capsule networks. IEEE Signal Processing Letters, 27, 2024–2028. https://doi.org/10.1109/LSP.2020.3034858
  • Ait Amou, M., Xia, K., Kamhi, S., & Mouhafid, M. (2022). A novel MRI diagnosis method for brain tumor classification based on CNN and Bayesian optimization. Healthcare, 10(3), 494. https://doi.org/10.3390/healthcare10030494
  • Alnabhan, M., Habboush, A. K., Abu Al-Haija, Q., Mohanty, A. K., Pattnaik, S., & Pattanayak, B. K. (2022). Hyper-tuned CNN using EVO technique for efficient biomedical image classification. Mobile Information Systems, 2022, 7874548. https://doi.org/10.1155/2022/2123662
  • Anaraki, A. K., Ayati, M., & Kazemi, F. (2019). MRI-based brain tumor grades classification and grading via CNNs and GA. Biocybernetics and Biomedical Engineering, 39(1), 63–74. https://doi.org/10.1016/j.bbe.2018.10.004
  • Andonie, R., & Florea, A.-C. (2020). Weighted random search for CNN hyperparameter optimization. International Journal of Computers Communications & Control, 15(2). https://doi.org/10.15837/ijccc.2020.2.3868
  • Aszemi, N. M., & Dominic, P. D. D. (2019). Hyperparameter optimization in convolutional neural network using genetic algorithms. International Journal of Advanced Computer Science and Applications, 10(6). http://doi.org/10.14569/IJACSA.2019.0100638
  • Bacanin, N., Bezdan, T., Venkatachalam, K., & Al-Turjman, F. (2021). Optimized CNN by firefly algorithm for magnetic resonance image classification of glioma brain tumor grade. Journal of Real-Time Image Processing, 18(4), 1085–1098. https://doi.org/10.1007/s11554-021-01106-x
  • Bakhshi, A., Noman, N., Chen, Z., Zamani, M., & Chalup, S. (2019, June 10-13). Fast automatic optimisation of CNN architectures for image classification using GA. In: 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 1283–1290), Wellington, New Zealand. https://doi.org/10.1109/CEC.2019.8790197
  • Bansal, S., Chhabra, G., Chandra, B. S., & Virmani, J. (2019). A hybrid CAD system design for liver diseases using clinical and radiological data. In: N. Dey, A. S. Ashour, S. J. Fong, S. Borra (Eds.), U-Healthcare Monitoring Systems (pp. 289–314). Elsevier. https://doi.org/10.1016/B978-0-12-815370-3.00012-8
  • Bashkandi, A. H., Sadoughi, K., Aflaki, F., Alkhazaleh, H. A., Mohammadi, H., & Jimenez, G. (2023). Combination of political optimizer, particle swarm optimizer, and CNN for brain tumor detection. Biomedical Signal Processing and Control, 81, 104434. https://doi.org/10.1016/j.bspc.2022.104434
  • Bauer, S., Wiest, R., Nolte, L.-P., & Reyes, M. (2013). A survey of MRI-based medical image analysis for brain tumor studies. Physics in Medicine & Biology, 58(13), R97–R129. https://doi.org/10.1088/0031-9155/58/13/R97
  • Bezdan, T., Milosevic, S., Venkatachalam, K., Zivkovic, M., Bacanin, N., & Strumberger, I. (2021, May 26-27). Optimizing convolutional neural network by hybridized elephant herding optimization algorithm for MRI classification of glioma brain tumor grade. In: 2021 Zooming Innovation in Consumer Technologies Conference (ZINC) (pp. 171–176), Novi Sad, Serbia. https://doi.org/10.1109/ZINC52049.2021.9499297
  • Bezdan, T., Zivkovic, M., Tuba, E., Strumberger, I., Bacanin, N., & Tuba, M. (2020, July 21-23). Glioma brain tumor grade classification from MRI using CNNs designed by modified FA. In: C. Kahraman, S. C. Onar, B. Oztaysi, I. U. Sari, S. Cebi, A. C. Tolga (Eds.), International Conference on Intelligent and Fuzzy Systems (INFUS 2020), (pp. 955–963), Istanbul, Turkey. https://doi.org/10.1007/978-3-030-51156-2_111
  • Bochinski, E., Senst, T., & Sikora, T. (2017, September 17-20). Hyper-parameter optimization for CNN committees based on evolutionary algorithms. In: 2017 IEEE International Conference on Image Processing (ICIP) (pp. 3924–3928), Beijing, China. https://doi.org/10.1109/ICIP.2017.8297018
  • Brain MRI images for brain tumor detection [Dataset]. (n.d.). Kaggle. Accessed: June 23, 2023, https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
  • Brain tumor classification (MRI) [Dataset]. (n.d.). Kaggle. Accessed: May 29, 2023, https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri
  • Brain tumor dataset [Dataset]. (n.d.). Figshare. Accessed: July 19, 2023, https://figshare.com/articles /dataset/brain_tumor_dataset/1512427
  • Brain tumor detection master [Dataset]. (n.d.). GitHub. Accessed: June 20, 2023, https://github.com/ MohamedAliHabib/Brain-TumorDetection/tree/master/augmenteddata
  • Brain tumor images dataset [Dataset]. (n.d.). Kaggle. Accessed: May 28, 2023, https://www.kaggle.com/datasets/simeondee/brain-tumor-images-dataset
  • Br35H: Brain tumor detection 2020 [Dataset]. (2020). Kaggle. Accessed: June 21, 2023, https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection
  • Cheng, J., Huang, W., Cao, S., Yang, R., Yang, W., Yun, Z., Wang, Z., & Feng, Q. (2015). Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLOS ONE, 10(10), e0140381. https://doi.org/10.1371/journal.pone.0140381
  • Dehkordi, A. A., Hashemi, M., Neshat, M., Mirjalili, S., & Sadiq, A. S. (2022). Brain tumor detection and classification using a new evolutionary CNN. https://doi.org/10.48550/arXiv.2204.12297
  • Deng, L., & Yu, D. (2014). Deep learning: Methods and applications. Foundations and Trends in Signal Processing, 7(3–4), 197–387. https://doi.org/10.1561/2000000039
  • De Silva, D., Fernando, S., Piyatilake, I. T. S., & Karunarathne, A. (2019, November 1-3). Wavelet based edge feature enhancement for convolutional neural networks. In: A. Verikas, D. P. Nikolaev, P. Radeva, J. Zhou (Eds.), Eleventh International Conference on Machine Vision (ICMV 2018) (Vol. 11041, pp. 751–760), Munich, Germany. https://doi.org/10.1117/12.2522849
  • Devi, R. L., Karpagavalli, S., & Vijayakumar, K. (2021, November 11-13). Detection and automated classification of brain tumor types in MRI images using CNN with grid search optimization. In: 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (pp. 1280–1284), Palladam, India. https://doi.org/10.1109/I-SMAC52330.2021.9640670
  • Dixit, A., & Nanda, A. (2022). An improved whale optimization algorithm-based radial neural network for multi-grade brain tumor classification. The Visual Computer, 38(11), 3525–3540. https://doi.org/10.1007/s00371-021-02176-5
  • Durga, P., & Sudhakar, T. (2023). A feature-based decision-making approach (FBDMA) for tumor detection using deep learning. Indian Journal of Computer Science and Engineering, 14(1), 63-80. https://doi.org/10.21817/indjcse/2023/v14i1/231401068
  • El-dosuky, M. A., & Shams, M. (2022). A deep learning-based cockroach swarm optimization approach for segmenting brain MRI images. In: A. E. Hassanien, R. Bhatnagar, V. Snášel, M. Y. Shams (Eds.), Medical Informatics and Bioimaging Using Artificial Intelligence: Challenges, Issues, Innovations and Recent Developments (pp. 3–13). Springer. https://doi.org/10.1007/978-3-030-91103-4_1
  • Fujita, H., Uchiyama, Y., Nakagawa, T., Fukuoka, D., Hatanaka, Y., Hara, T., Lee, G. N., Hayashi, Y., Ikedo, Y., Gao, X., & Zhou, X. (2008). Computer-aided diagnosis: The emerging of three CAD systems induced by Japanese health care needs. Computer Methods and Programs in Biomedicine, 92(3), 238–248. https://doi.org/10.1016/j.cmpb.2008.04.003
  • Gazi Brains 2020 dataset [Dataset]. (2024). Kaggle. Accessed: February 23, 2024, https://www.kaggle.com/datasets/gazibrains2020/gazi-brains-2020
  • Gazi Brains 2020 dataset (Version 2; pre-processed) [Dataset]. (2024). Kaggle. Accessed: February 23, 2024, https://www.kaggle.com/datasets/gazibrains2020/gazi-brains-2020-version-2
  • Ghassemi, N., Shoeibi, A., & Rouhani, M. (2020). DNN with generative adversarial networks pre-training for brain tumor classification based on MR images. Biomedical Signal Processing and Control, 57, 101678. https://doi.org/10.1016/j.bspc.2019.101678
  • Guo, T., Dong, J., Li, H., & Gao, Y. (2017, March 10-12). Simple convolutional neural network on image classification. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA) (pp. 721–724), Beijing, China. https://doi.org/10.1109/ICBDA.2017.8078730
  • Irmak, E. (2021). Multi-classification of brain tumor MRI images using DCNN with fully optimized framework. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45(3), 1015–1036. https://doi.org/10.1007/s40998-021-00426-9
  • Ismael, M. R., & Abdel-Qader, I. (2018, May 3-5). Brain tumor classification via statistical features and back-propagation neural network. In: 2018 IEEE International Conference on Electro/Information Technology (EIT) (pp. 0252–0257), Rochester, MI, USA. https://doi.org/10.1109/EIT.2018.8500308
  • Kang, J., Ullah, Z., & Gwak, J. (2021). MRI-based brain tumor classification using ensemble of deep features and machine learning classifiers. Sensors, 21(6), 2222. https://doi.org/10.3390/s21062222
  • Khotanlou, H., Colliot, O., Atif, J., & Bloch, I. (2009). 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets and Systems, 160(10), 1457–1473. https://doi.org/10.1016/j.fss.2008.11.016
  • Krishna Priya, R., & Chacko, S. (2021). Improved particle swarm optimized DCNN with super-pixel clustering for multiple sclerosis lesion segmentation in brain MRI imaging. International Journal for Numerical Methods in Biomedical Engineering, 37(9), e3506. https://doi.org/10.1002/cnm.3506
  • Lather, M., & Singh, P. (2020). Investigating brain tumor segmentation and detection techniques. Procedia Computer Science, 167, 121–130. https://doi.org/10.1016/j.procs.2020.03.189
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
  • Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). SMA: A new method for stochastic optimization. Future Generation Computer Systems, 111, 300–323. https://doi.org/10.1016/j.future.2020.03.055
  • Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., Van Der Laak, J. A., Van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
  • Lu, S., Wang, S.-H., & Zhang, Y.-D. (2021). Detection of abnormal brain in MRI via improved AlexNet and ELM optimized by chaotic bat algorithm. Neural Computing and Applications, 33, 10799–10811. https://doi.org/10.1007/s00521-020-05082-4
  • Magboo, M. S. A., & Magboo, V. P. C. (2022, September 13-14). Detection of Brain Tumors from MRI Images using Convolutional Neural Networks. In: 2022 5th International Conference of Computer and Informatics Engineering (IC2IE) (pp. 325–330), Jakarta, Indonesia. https://doi.org/10.1109/IC2IE56416.2022.9970126
  • Minarno, A. E., Mandiri, M. H. C., Munarko, Y., & Hariyady, H. (2021). CNN with hyperparameter tuning for brain tumor classification. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 6(2), 137–144. https://doi.org/10.22219/kinetik.v6i2.1219
  • Mohan, G., & Subashini, M. M. (2018). MRI-based medical image analysis: Survey on brain tumor grade classification. Biomedical Signal Processing and Control, 39, 139–161. https://doi.org/10.1016/j.bspc.2017.07.007
  • MRI-based brain tumor images [Dataset]. (n.d.). Kaggle. Accessed: July 13, 2023, https://www.kaggle.com/datasets/mhantor/mri-based-brain-tumor-images
  • Nanda, A., Barik, R. C., & Bakshi, S. (2023). SSO-RBNN driven brain tumor classification with saliency-k-means segmentation technique. Biomedical Signal Processing and Control, 81, 104356. https://doi.org/10.1016/j.bspc.2022.104356
  • Nayak, D. R., Padhy, N., Mallick, P. K., Bagal, D. K., & Kumar, S. (2022). Brain tumour classification using noble deep learning approach with parametric optimization through metaheuristics approaches. Computers, 11(1), 10. https://doi.org/10.3390/computers11010010
  • Pan, Y., Huang, W., Lin, Z., Zhu, W., Zhou, J., Wong, J., & Ding, Z. (2015, August 25-29). Brain tumor grading based on Neural Networks and Convolutional Neural Networks. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 699–702), Milan, Italy. https://doi.org/10.1109/EMBC.2015.7318458
  • Pashaei, A., Sajedi, H., & Jazayeri, N. (2018, October 25-26). Brain Tumor Classification via Convolutional Neural Network and Extreme Learning Machines. In: 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE) (pp. 314–319), Mashhad, Iran. https://doi.org/10.1109/ICCKE.2018.8566571
  • Rai, H. M., & Chatterjee, K. (2020). Detection of brain abnormality by a novel Lu-Net deep neural CNN model from MR images. Machine Learning with Applications, 2, 100004. https://doi.org/10.1016/j.mlwa.2020.100004
  • Ravì, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., & Yang, G.-Z. (2016). Deep learning for health informatics. IEEE Journal of Biomedical and Health Informatics, 21(1), 4–21. https://doi.org/10.1109/JBHI.2016.2636665
  • Reiling, A., Mitchell, W., Westberg, S., Balster, E., & Taha, T. (2019, July 15-19). CNN optimization with a genetic algorithm. In: 2019 IEEE National Aerospace and Electronics Conference (NAECON) (pp. 340–344), Dayton, OH, USA. https://doi.org/10.1109/NAECON46414.2019.9058307
  • Rere, L. M. R., Fanany, M. I., & Arymurthy, A. M. (2016). Metaheuristic algorithms for CNN. Computational Intelligence and Neuroscience, 2016, 1537325. https://doi.org/10.1155/2016/1537325
  • Saeedi, S., Rezayi, S., Keshavarz, H., & Niakan Kalhori, S. R. (2023). MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques. BMC Medical Informatics and Decision Making, 23(1), 16. https://doi.org/10.1186/s12911-023-02114-6
  • Sajjad, M., Khan, S., Muhammad, K., Wu, W., Ullah, A., & Baik, S. W. (2019). Multi-grade brain tumor classification using deep CNN with extensive data augmentation. Journal of Computational Science, 30, 174–182. https://doi.org/10.1016/j.jocs.2018.12.003
  • Sasank, V., & Venkateswarlu, S. (2022). Hybrid deep neural network with adaptive rain optimizer algorithm for multi-grade brain tumor classification of MRI images. Multimedia Tools and Applications, 81(6), 8021–8057. https://doi.org/10.1007/s11042-022-12106-9
  • Singh, P., Chaudhury, S., & Panigrahi, B. K. (2021). Hybrid MPSO-CNN: Multilevel particle swarm optimized hyperparameters of CNN. Swarm and Evolutionary Computation, 63, 100863. https://doi.org/10.1016/j.swevo.2021.100863
  • Taher, F., Shoaib, M. R., Emara, H. M., Abdelwahab, K. M., El-Samie, F. E. A., & Haweel, M. T. (2022). Efficient framework for brain tumor detection using different deep learning techniques. Frontiers in Public Health, 10, 959667. https://doi.org/10.3389/fpubh.2022.959667
  • Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview and application in radiology. Insights into Imaging, 9, 611–629. https://doi.org/10.1007/s13244-018-0639-9
  • Yoo, J.-H., Yoon, H.-I., Kim, H.-G., Yoon, H.-S., & Han, S.-S. (2019, November 25). Optimization of Hyper-parameter for CNN Model using Genetic Algorithm. In: 2019 1st International Conference on Electrical, Control and Instrumentation Engineering (ICECIE) (pp. 1–6), Kuala Lumpur, Malaysia. https://doi.org/10.1109/ICECIE47765.2019.8974762
  • Zacharaki, E. I., Wang, S., Chawla, S., Soo Yoo, D., Wolf, R., Melhem, E. R., & Davatzikos, C. (2009). Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magnetic Resonance in Medicine, 62(6), 1609–1618. https://doi.org/10.1002/mrm.22147
  • Zaidi, H., Montandon, M.-L., & Alavi, A. (2008). The clinical role of fusion imaging using PET, CT, and MR imaging. PET Clinics, 3(3), 275–291. https://doi.org/10.1016/j.cpet.2009.03.002
  • Zailan, Z. N., Mostafa, S. A., Abdulmaged, A. I., Baharum, Z., Jaber, M. M., & Hidayat, R. (2022). Deep learning approach for prediction of brain tumor from small number of MRI images. JOIV: International Journal on Informatics Visualization, 6(2-2), 581–586. https://doi.org/10.30630/joiv.6.2.987
  • ZainEldin, H., Gamel, S. A., El-Kenawy, E.-S. M., Alharbi, A. H., Khafaga, D. S., Ibrahim, A., & Talaat, F. M. (2022). Brain tumor detection and classification using deep learning and sine-cosine fitness grey wolf optimization. Bioengineering, 10(1), 18. https://doi.org/10.3390/bioengineering10010018
There are 68 citations in total.

Details

Primary Language English
Subjects Deep Learning, Satisfiability and Optimisation
Journal Section Research Article
Authors

Kevser Özdem Karaca 0000-0002-6695-200X

Bilgehan Arslan 0000-0002-5160-4408

Yılmaz Atay 0000-0002-3298-3334

Seref Sagiroglu 0000-0003-0805-5818

Submission Date November 13, 2025
Acceptance Date December 15, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 12 Issue: 4

Cite

APA Özdem Karaca, K., Arslan, B., Atay, Y., Sagiroglu, S. (2025). Effective Approach Based on Slime Mold Algorithm for Hyper-Parameter Tuning of CNNs in Brain Tumor Classification. Gazi University Journal of Science Part A: Engineering and Innovation, 12(4), 1187-1216. https://doi.org/10.54287/gujsa.1822726