Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of the Bed Hydrodynamics by MFIX-PIC in the Biomass Gasification Process of Circulating Fluidized Bed

Yıl 2021, Cilt: 8 Sayı: 4, 551 - 569, 30.12.2021
https://doi.org/10.54287/gujsa.1030632

Öz

In this study, it was aimed to control the formation of flow regimes planned to be in the gasification process on the model, and the hydrodynamic structure of the circulating fluidized bed gasifier was obtained using the MFIX program. For this purpose, a model was established before pilot scale systems and hydrodynamic modeling was performed by entering the system dimensions that were calculated analytically. Because it is a necessary condition from the point of view of the chemical reaction to ensure the fluid bed regime of the gasifier, which is designated as a solid model, is a necessary condition. For this reason, the system whose geometry was determined and semi-empirical modeling was performed was modeled under previously determined operating conditions using the PIC (Eulerian-Lagrangian) model in the MFIX package program.
In this technique, while fluid behavior is resolved by the Euler structure, particle behaviour is considered by the Lagrangian structure. The numeral effects are in great arrangement with the empiric datum showing that MFIX-PIC methods are reasonable among concentrated gas-solid network simulation. The primary characteristics of gas-solid streams in CFB are qualitatively determined by an ordinary annular flux form inside the main bed. The pressure inclination formed in the gas phase inside the lower and upper zones of the CFB bed column indicated turbulent and irregular gas-solid streams in lower and upper zones. The increased superficial gas velocity conducts to a further dissymmetrical gas axial velocity model, which shows improved effect in the recycling frame for gas homogeneity due to the over gas velocity. The superficial gas velocity obtained as a result of the MFIX-PIC modelling was found to be 7m/s for 100 kWth gas yield in the gasifier. The superficial gas velocity is the most basic parameter to be used both in the experimental parameter and in the thermochemical simulation.

Kaynakça

  • Alobaid, F. (2015). An offset-method for Euler-Lagrange approach. Chemical Engineering Science, 138, 173-193. doi:10.1016/j.ces.2015.08.010
  • Andrews, M. J., & O'Rourke, P. J. (1996). The multiphase particle-in-cell (MP-PIC) method for dense particulate flows. International Journal of Multiphase Flow, 22(2), 379-402. doi:10.1016/0301-9322(95)00072-0
  • Auzerais, F. M., Jackson, R., & Russel, W. B. (1988). The resolution of shocks and the effects of compressible sediments in transient settling. Journal of Fluid Mechanics, 195, 437-462. doi:10.1017/S0022112088002472
  • Bai, D. R., Jin, Y., Yu, Z. Q., & Zhu, J. X. (1992). The axial distribution of the cross-sectionally averaged voidage in fast fluidized beds. Powder Technology, 71(1), 51-58. doi:10.1016/0032-5910(92)88003-Z
  • Chen, J., Meng, C., Wang, S., Yu, G., Hu, T., & Lin, F. (2017). Effect of solid mass flux on anisotropic gas-solid flowin risers determined with an LES-SOM model. Particuology, 34, 70–80. doi:10.1016%2Fj.partic.2016.12.003
  • Clarke, M., & Musser, J. (2020). The MFIX Particle-in-Cell Method (MFIXPIC) Theory Guide; DOE/NETL-2020/2115; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 28. doi:10.2172/1630414
  • Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies, Geotechnique, 29(1), 47–65. doi:10.1680/geot.1979.29.1.47
  • Deen, N. G., Van Sint Annaland, M., Van der Hoef, M. A., & Kuipers, J. A. M. (2007). Review of discrete particle modeling of fluidized beds. Chemical Engineering Science, 62(1-2), 28-44. doi:10.1016/j.ces.2006.08.014
  • Ding, J., & Gidaspow, D. (1990) A bubbling fluidization model using kinetic theory of granular flow. AIChE Journal, 36(4), 523-538. doi:10.1002/aic.690360404
  • Ergun, S. (1952) Fluid flow through packed columns. Chemical Engineering Progress, 48(2), 89–94.
  • Gu, J., Shao, Y., Liu, X., Zhong, W. & Yu, A. (2018). Modelling of particle flow in a dual circulation fluidized bed by a Eulerian-Lagrangian approach. Chemical Engineering Science, 192, 619–633. doi:10.1016/j.ces.2018.08.008
  • Gidaspow, D. (1994). Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Academic Press
  • Hamidouche, Z., Masi, E., Fede, P., Simonin, O., Mayer, K., & Penthor, S. (2019). Unsteady three-dimensional theoretical model and numerical simulation of a 120-kW chemical looping combustion pilot plant. Chemical Engineering Science, 193, 102–119. doi:10.1016/j.ces.2018.08.032
  • Hu, C., Luo, K., Wang, S., Sun, L., & Fan, J. (2019). Influences of operating parameters on the fluidized bed coal gasification process: A coarse-grained CFD-DEM study. Chemical Engineering Science, 95, 693-706.
  • Jiang, Y., Qiu, G., & Wang, H. (2014). Modelling and experimental investigation of the full-loop gas-solid flow in a circulating fluidized bed with six cyclone separators. Chemical Engineering Science, 109, 85–97. doi:10.1016/j.ces.2014.01.029
  • Jiradilok, V., Gidaspow, D., Breault, R. W., Shadle, L. J., Guenther, C., & Shi, S. (2008). Computation of turbulence and dispersion of cork in the NETL riser. Chemical Engineering Science, 63(8), 2135–2148. doi:10.1016/j.ces.2008.01.019
  • Kallio, S., Peltola, J., & Niemi T. (2015) Analysis of the time-averaged gas–solid drag force based on data from transient 3D CFD simulations of fluidized beds, Powder Technology, 274, 227-238. doi:10.1016/j.powtec.2015.01.029
  • Kunii, D., & Levenspiel, O. (1991). Fluidization Engineering. Butterworth-Heinemann Inc.
  • Liu, H., Cattolica, R. J., Seiser, R., & Liao, C-h., (2015). Three-dimensional full-loop simulation of a dual fluidized-bed biomass gasifier. Applied Energy, 160, 489–501. doi:10.1016/j.apenergy.2015.09.065
  • Liu, H., Cattolica, R. J., & Seiser, R. (2017). Operating parameter effects on the solids circulation rate in the CFD simulation of a dual fluidized-bed gasification system. Chemical Engineering Science, 169, 235–245. doi:10.1016/j.ces.2016.11.040
  • Liu, D., & van Wachem, B. (2019). Comprehensive assessment of the accuracy of CFD- DEM simulations of bubbling fluidized beds. Powder Technology, 343, 145–158. doi:10.1016/j.powtec.2018.11.025
  • Lu, L., Gao, X., Shahnam, M., & Rogers, W. A. (2019). Coarse grained computational fluid dynamic simulation of sands and biomass fluidization with a hybrid drag. AIChE Journal, 66(4), e16867. doi:10.1002/aic.16867
  • Luo, K., Wu, F., Yang, S., Fang, M., & Fan, J. (2015). High-fidelity simulation of the 3-D full-loop gas-solid flow characteristics in the circulating fluidized bed. Chemical Engineering Science, 123, 22–38. doi:10.1016/j.ces.2014.10.039
  • Ma, Q., Lei, F., Xu, X., & Xiao, Y. (2017). Three-dimensional full-loop simulation of a high-density CFB with standpipe aeration experiments. Powder Technology, 320, 574–585. doi:10.1016/j.powtec.2017.07.094
  • Mokhtar, M. A., Kuwagi, K., Takami, T., Hirano, H. & Horio, M. (2012). Validation of the Similar Particle Assembly (SPA) Model for the Fluidization of Geldart's Group A and D Particles. AIChE Journal, 58(1), 87–98. doi:10.1002/aic.12568
  • Bierwisch, C., Kraft, T., Riedel, H., & Moseler, M. (2009). Three-dimensional discrete element models for the granular statics and dynamics of powders in cavity filling. Journal of the Mechanics and Physics of Solids, 57(1), 10–31. doi:10.1016/j.jmps.2008.10.006
  • Nikolopoulos, A., Nikolopoulos, N., Charitos, A., Grammelis, P., Kakaras, E., Bidwe, A. R. & Varela, G. (2013). High-resolution 3-D full-loop simulation of a CFB carbonator cold model. Chemical Engineering Science, 90, 137–150. doi:10.1016/j.ces.2012.12.007
  • O'Rourke, P. J., Zhao, P., & Snider, D. (2009). A model for collisional exchange in gas/liquid/solid fluidized beds. Chemical Engineering Science, 64(8), 1784–1797. doi:10.1016/j.ces.2008.12.014
  • O'Rourke, P. J., & Snider, D. M. (2010). An improved collision damping time for MP-PIC calculations of dense particle flows with applications to polydisperse sedimenting beds and colliding particle jets. Chemical Engineering Science, 65(22), 6014-6028. doi:10.1016/j.ces.2010.08.032
  • O'Rourke, P. J., & Snider, D. M. (2012). Inclusion of collisional return-to-isotropy in the MP-PIC method. Chemical Engineering Science, 80, 39–54. doi:10.1016/j.ces.2012.05.047
  • O'Rourke, P. J., & Snider, D. M. (2014). New blended acceleration model for the particle contact forces induced by an interstitial fluid in dense particle/fluid flows. Powder Technology, 256, 39–51. doi:10.1016/j.powtec.2014.01.084
  • Patankar N. A., & Joseph D. D. (2001). Modeling and numerical simulation of particulate flows by the Eulerian-Lagrangian approach. International Journal of Multiphase Flow, 27(10), 1659-1684. doi:10.1016/S0301-9322(01)00021-0
  • Sakai, M., & Koshizuka, S. (2009). Large-scale discrete element modeling in pneumatic conveying. Chemical Engineering Science, 64(3), 533-539. doi:10.1016/j.ces.2008.10.003
  • Shi, X., Sun, R., Lan, X., Liu, F., Zhang, Y., & Gao, J. (2015). CPFD simulation of solids residence time and back-mixing in CFB risers. Powder Technology, 271, 16–25. doi:10.1016/j.powtec.2014.11.011
  • Snider, D. M. (2001). An Incompressible Three-Dimensional Multiphase Particle-in-Cell Model for Dense Particle Flows. Journal of Computational Physics, 170(2), 523–549. doi:10.1006/jcph.2001.6747
  • Squires, A. M. (1982). Contribution towards a history of fluidization. In: Proceeding of the Joint Meeting of Chemical Engineering Society of China and AIChE, 322–353.
  • Stroh, A., Daikeler, A., Nikku, M., May, J., Alobaid, F., von Bohnstein, M., Ströhle, J., & Epple, B. (2019). Coarse grain 3D CFD-DEM simulation and validation with capacitance probe measurements in a circulating fluidized bed. Chemical Engineering Science, 196, 37–53. doi:10.1016/j.ces.2018.11.052
  • Tsuji, Y., Kawaguchi, T., & Tanaka, T. (1993). Discrete particle simulation of two-dimensional fluidized bed. Powder Technology, 77(1), 79–87. doi:10.1016/0032-5910(93)85010-7
  • Thapa, R. K., Frohner, A., Tondl, G., Pfeifer, C., & Halvorsen, B. M. (2016). Circulating fluidized bed combustion reactor: Computational Particle Fluid Dynamic model validation and gas feed position optimization. Computers & Chemical Engineering, 92, 180–188. doi:10.1016/j.compchemeng.2016.05.008
  • Topal, H. (1999). Experimental Investigation of Hydrodynamic, Combustion and Emission Properties of Circulating Fluidized Bed. PhD Thesis, Gazi University, Ankara, Turkey. (In Turkish).
  • Atimtay, A. T. & Topal, H. (2004). Co-combustion of olive cake with lignite coal in a circulating fluidized bed. Fuel, 83(7-8), 859–867. doi:10.1016/j.fuel.2003.09.015
  • Wang, Q., Yang, H., Wang, P., Lu, J., Liu, Q., Zhang, H., Wei, L., & Zhang, M. (2014a). Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal, part I—determination of modeling parameters, Powder Technol. 253, 814–821. doi:10.1016/j.powtec.2013.11.041
  • Wang, Q., Yang, H., Wang, P., Lu, J., Liu, Q., Zhang, H., Wei, L., & Zhang, M. (2014b). Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal part II—investigation of solids circulation. Powder Technology, 253, 822–828. doi:10.1016/j.powtec.2013.11.040
  • Wang, S., Lu, H., Zhao, F., & Liu, G. (2014). CFD studies of dual circulating fluidized bed reactors for chemical looping combustion processes. Chemical Engineering Journal, 236, 121-130. doi:10.1016/j.cej.2013.09.033
  • Wang, Q., Niemi, T., Peltola, J., Kallio, S., Yang, H., Lu, J., & Wei, L. (2015). Particle size distribution in CPFD modeling of gas–solid flows in a CFB riser. Particuology, 21, 107–117. doi:10.1016/j.partic.2014.06.009
  • Wang, S., Luo, K., Yang, S., Hu, C., & Fan, J. (2017a) LES-DEM investigation of the time-related solid phase properties and improvements of flow uniformity in a dual-side refeed CFB. Chemical Engineering Journal, 313, 858–872. doi:10.1016/j.cej.2016.10.130
  • Wang, S., Luo, K., Hu, C., & Fan, J. (2017b). CFD-DEM study of the effect of cyclone arrangements on the gas-solid flow dynamics in the full-loop circulating fluidized bed. Chemical Engineering Science, 172, 199–215. doi:10.1016/j.ces.2017.05.052
  • Wang, S., Luo, K., Hu, C., Sun, L., & Fan, J. (2018). Effect of superficial gas velocity on solid behaviors in a full-loop CFB. Powder Technology, 333, 91–105. doi:10.1016/j.powtec.2018.04.011
  • Wen, C. Y., & Yu, Y. H. (1966). Mechanics of fluidization. The Chemical Engineering Progress Symposium Series, 162, 100-111.
  • Wu, Y., Peng, L. Qin, L., Wang, M., Gao, J., & Lan, X. (2018). Validation and application of CPFD models in simulating hydrodynamics and reactions in riser reactor with Geldart A particles. Powder Technology, 323, 269–283. doi:10.1016/j.powtec.2017.10.003
  • Xu, Y., Musser, J., Li, T., Gopalan, B., Panday, R., Tucker, J., Breault, G., Clarke, M. A., & Rogers, W. A. (2018). Numerical simulation and experimental study of the gas-solid flow behavior inside a full-loop circulating fluidized bed: evaluation of different drag models. Ind. Eng. Chem. Res., 57(2), 740–750. doi:10.1021/acs.iecr.7b03817
  • Verma, V. & Padding, J. T. (2020). A novel approach to MP-PIC: Continuum particle model for dense particle flows in fluidized beds. Chemical Engineering Science: X, 6, 100053. doi:10.1016/j.cesx.2019.100053
  • Verma, V., Padding, J. T., Deen, N. G., & Kuipers, J. A. M. (2015). Effect of bed size on hydrodynamics in 3-D gas-solid fluidized beds. AIChE Journal, 61(5), 1492–1506. doi:10.1002/aic.14738
  • Yang, S., Wang, S., Luo, K., Fan, J., & Chew, J. W. (2019). Numerical investigation of the backmixing and non-uniform characteristics in the three-dimensional full-loop circulating fluidized bed combustor with six parallel cyclones. Applied Thermal Engineering, 153, 524–535. doi:10.1016/j.applthermaleng.2019.03.032
  • Yang, S., & Wang, S. (2020). Eulerian-Langrangian simulation of the full-loop gas-solid hydrodynamics in a pilot-scale circulating fluidized bed. Powder Technology, 369, 223–237. doi:10.1016/j.powtec.2020.05.043
  • Zhang, N., Lu, B., Wang, W., & Li, J. (2010). 3D CFD simulation of hydrodynamics of a 150MWe circulating fluidized bed boiler. Chemical Engineering Journal, 162(2), 821–828. doi:10.1016/j.cej.2010.06.033
  • Zhang, Y., Zhao, Y., Lu, L., Ge, W., Wang, J., & Duan, C. (2017) Assessment of polydisperse drag models for the size segregation in a bubbling fluidized bed using discrete particle method. Chemical Engineering Science, 160, 106–112. doi:10.1016/j.ces.2016.11.028
  • Zhong, W., Yu, A., Zhou, G., Xie, J., & Zhang, H. (2016). CFD simulation of dense particulate reaction system: approaches, recent advances and applications. Chemical Engineering Science, 140, 16–43. doi:10.1016/j.ces.2015.09.035
  • Zhou, J., Grace, J. R., Qin, S., Brereton, C. M. H., Lim, C. J., & Zhu, J. (1994). Voidage profiles in a circulating fluidized bed of square cross-section. Chemical Engineering Science, 49(19), 3217–3226. doi:10.1016/0009-2509(94)E0125-A
Yıl 2021, Cilt: 8 Sayı: 4, 551 - 569, 30.12.2021
https://doi.org/10.54287/gujsa.1030632

Öz

Kaynakça

  • Alobaid, F. (2015). An offset-method for Euler-Lagrange approach. Chemical Engineering Science, 138, 173-193. doi:10.1016/j.ces.2015.08.010
  • Andrews, M. J., & O'Rourke, P. J. (1996). The multiphase particle-in-cell (MP-PIC) method for dense particulate flows. International Journal of Multiphase Flow, 22(2), 379-402. doi:10.1016/0301-9322(95)00072-0
  • Auzerais, F. M., Jackson, R., & Russel, W. B. (1988). The resolution of shocks and the effects of compressible sediments in transient settling. Journal of Fluid Mechanics, 195, 437-462. doi:10.1017/S0022112088002472
  • Bai, D. R., Jin, Y., Yu, Z. Q., & Zhu, J. X. (1992). The axial distribution of the cross-sectionally averaged voidage in fast fluidized beds. Powder Technology, 71(1), 51-58. doi:10.1016/0032-5910(92)88003-Z
  • Chen, J., Meng, C., Wang, S., Yu, G., Hu, T., & Lin, F. (2017). Effect of solid mass flux on anisotropic gas-solid flowin risers determined with an LES-SOM model. Particuology, 34, 70–80. doi:10.1016%2Fj.partic.2016.12.003
  • Clarke, M., & Musser, J. (2020). The MFIX Particle-in-Cell Method (MFIXPIC) Theory Guide; DOE/NETL-2020/2115; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 28. doi:10.2172/1630414
  • Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies, Geotechnique, 29(1), 47–65. doi:10.1680/geot.1979.29.1.47
  • Deen, N. G., Van Sint Annaland, M., Van der Hoef, M. A., & Kuipers, J. A. M. (2007). Review of discrete particle modeling of fluidized beds. Chemical Engineering Science, 62(1-2), 28-44. doi:10.1016/j.ces.2006.08.014
  • Ding, J., & Gidaspow, D. (1990) A bubbling fluidization model using kinetic theory of granular flow. AIChE Journal, 36(4), 523-538. doi:10.1002/aic.690360404
  • Ergun, S. (1952) Fluid flow through packed columns. Chemical Engineering Progress, 48(2), 89–94.
  • Gu, J., Shao, Y., Liu, X., Zhong, W. & Yu, A. (2018). Modelling of particle flow in a dual circulation fluidized bed by a Eulerian-Lagrangian approach. Chemical Engineering Science, 192, 619–633. doi:10.1016/j.ces.2018.08.008
  • Gidaspow, D. (1994). Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Academic Press
  • Hamidouche, Z., Masi, E., Fede, P., Simonin, O., Mayer, K., & Penthor, S. (2019). Unsteady three-dimensional theoretical model and numerical simulation of a 120-kW chemical looping combustion pilot plant. Chemical Engineering Science, 193, 102–119. doi:10.1016/j.ces.2018.08.032
  • Hu, C., Luo, K., Wang, S., Sun, L., & Fan, J. (2019). Influences of operating parameters on the fluidized bed coal gasification process: A coarse-grained CFD-DEM study. Chemical Engineering Science, 95, 693-706.
  • Jiang, Y., Qiu, G., & Wang, H. (2014). Modelling and experimental investigation of the full-loop gas-solid flow in a circulating fluidized bed with six cyclone separators. Chemical Engineering Science, 109, 85–97. doi:10.1016/j.ces.2014.01.029
  • Jiradilok, V., Gidaspow, D., Breault, R. W., Shadle, L. J., Guenther, C., & Shi, S. (2008). Computation of turbulence and dispersion of cork in the NETL riser. Chemical Engineering Science, 63(8), 2135–2148. doi:10.1016/j.ces.2008.01.019
  • Kallio, S., Peltola, J., & Niemi T. (2015) Analysis of the time-averaged gas–solid drag force based on data from transient 3D CFD simulations of fluidized beds, Powder Technology, 274, 227-238. doi:10.1016/j.powtec.2015.01.029
  • Kunii, D., & Levenspiel, O. (1991). Fluidization Engineering. Butterworth-Heinemann Inc.
  • Liu, H., Cattolica, R. J., Seiser, R., & Liao, C-h., (2015). Three-dimensional full-loop simulation of a dual fluidized-bed biomass gasifier. Applied Energy, 160, 489–501. doi:10.1016/j.apenergy.2015.09.065
  • Liu, H., Cattolica, R. J., & Seiser, R. (2017). Operating parameter effects on the solids circulation rate in the CFD simulation of a dual fluidized-bed gasification system. Chemical Engineering Science, 169, 235–245. doi:10.1016/j.ces.2016.11.040
  • Liu, D., & van Wachem, B. (2019). Comprehensive assessment of the accuracy of CFD- DEM simulations of bubbling fluidized beds. Powder Technology, 343, 145–158. doi:10.1016/j.powtec.2018.11.025
  • Lu, L., Gao, X., Shahnam, M., & Rogers, W. A. (2019). Coarse grained computational fluid dynamic simulation of sands and biomass fluidization with a hybrid drag. AIChE Journal, 66(4), e16867. doi:10.1002/aic.16867
  • Luo, K., Wu, F., Yang, S., Fang, M., & Fan, J. (2015). High-fidelity simulation of the 3-D full-loop gas-solid flow characteristics in the circulating fluidized bed. Chemical Engineering Science, 123, 22–38. doi:10.1016/j.ces.2014.10.039
  • Ma, Q., Lei, F., Xu, X., & Xiao, Y. (2017). Three-dimensional full-loop simulation of a high-density CFB with standpipe aeration experiments. Powder Technology, 320, 574–585. doi:10.1016/j.powtec.2017.07.094
  • Mokhtar, M. A., Kuwagi, K., Takami, T., Hirano, H. & Horio, M. (2012). Validation of the Similar Particle Assembly (SPA) Model for the Fluidization of Geldart's Group A and D Particles. AIChE Journal, 58(1), 87–98. doi:10.1002/aic.12568
  • Bierwisch, C., Kraft, T., Riedel, H., & Moseler, M. (2009). Three-dimensional discrete element models for the granular statics and dynamics of powders in cavity filling. Journal of the Mechanics and Physics of Solids, 57(1), 10–31. doi:10.1016/j.jmps.2008.10.006
  • Nikolopoulos, A., Nikolopoulos, N., Charitos, A., Grammelis, P., Kakaras, E., Bidwe, A. R. & Varela, G. (2013). High-resolution 3-D full-loop simulation of a CFB carbonator cold model. Chemical Engineering Science, 90, 137–150. doi:10.1016/j.ces.2012.12.007
  • O'Rourke, P. J., Zhao, P., & Snider, D. (2009). A model for collisional exchange in gas/liquid/solid fluidized beds. Chemical Engineering Science, 64(8), 1784–1797. doi:10.1016/j.ces.2008.12.014
  • O'Rourke, P. J., & Snider, D. M. (2010). An improved collision damping time for MP-PIC calculations of dense particle flows with applications to polydisperse sedimenting beds and colliding particle jets. Chemical Engineering Science, 65(22), 6014-6028. doi:10.1016/j.ces.2010.08.032
  • O'Rourke, P. J., & Snider, D. M. (2012). Inclusion of collisional return-to-isotropy in the MP-PIC method. Chemical Engineering Science, 80, 39–54. doi:10.1016/j.ces.2012.05.047
  • O'Rourke, P. J., & Snider, D. M. (2014). New blended acceleration model for the particle contact forces induced by an interstitial fluid in dense particle/fluid flows. Powder Technology, 256, 39–51. doi:10.1016/j.powtec.2014.01.084
  • Patankar N. A., & Joseph D. D. (2001). Modeling and numerical simulation of particulate flows by the Eulerian-Lagrangian approach. International Journal of Multiphase Flow, 27(10), 1659-1684. doi:10.1016/S0301-9322(01)00021-0
  • Sakai, M., & Koshizuka, S. (2009). Large-scale discrete element modeling in pneumatic conveying. Chemical Engineering Science, 64(3), 533-539. doi:10.1016/j.ces.2008.10.003
  • Shi, X., Sun, R., Lan, X., Liu, F., Zhang, Y., & Gao, J. (2015). CPFD simulation of solids residence time and back-mixing in CFB risers. Powder Technology, 271, 16–25. doi:10.1016/j.powtec.2014.11.011
  • Snider, D. M. (2001). An Incompressible Three-Dimensional Multiphase Particle-in-Cell Model for Dense Particle Flows. Journal of Computational Physics, 170(2), 523–549. doi:10.1006/jcph.2001.6747
  • Squires, A. M. (1982). Contribution towards a history of fluidization. In: Proceeding of the Joint Meeting of Chemical Engineering Society of China and AIChE, 322–353.
  • Stroh, A., Daikeler, A., Nikku, M., May, J., Alobaid, F., von Bohnstein, M., Ströhle, J., & Epple, B. (2019). Coarse grain 3D CFD-DEM simulation and validation with capacitance probe measurements in a circulating fluidized bed. Chemical Engineering Science, 196, 37–53. doi:10.1016/j.ces.2018.11.052
  • Tsuji, Y., Kawaguchi, T., & Tanaka, T. (1993). Discrete particle simulation of two-dimensional fluidized bed. Powder Technology, 77(1), 79–87. doi:10.1016/0032-5910(93)85010-7
  • Thapa, R. K., Frohner, A., Tondl, G., Pfeifer, C., & Halvorsen, B. M. (2016). Circulating fluidized bed combustion reactor: Computational Particle Fluid Dynamic model validation and gas feed position optimization. Computers & Chemical Engineering, 92, 180–188. doi:10.1016/j.compchemeng.2016.05.008
  • Topal, H. (1999). Experimental Investigation of Hydrodynamic, Combustion and Emission Properties of Circulating Fluidized Bed. PhD Thesis, Gazi University, Ankara, Turkey. (In Turkish).
  • Atimtay, A. T. & Topal, H. (2004). Co-combustion of olive cake with lignite coal in a circulating fluidized bed. Fuel, 83(7-8), 859–867. doi:10.1016/j.fuel.2003.09.015
  • Wang, Q., Yang, H., Wang, P., Lu, J., Liu, Q., Zhang, H., Wei, L., & Zhang, M. (2014a). Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal, part I—determination of modeling parameters, Powder Technol. 253, 814–821. doi:10.1016/j.powtec.2013.11.041
  • Wang, Q., Yang, H., Wang, P., Lu, J., Liu, Q., Zhang, H., Wei, L., & Zhang, M. (2014b). Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal part II—investigation of solids circulation. Powder Technology, 253, 822–828. doi:10.1016/j.powtec.2013.11.040
  • Wang, S., Lu, H., Zhao, F., & Liu, G. (2014). CFD studies of dual circulating fluidized bed reactors for chemical looping combustion processes. Chemical Engineering Journal, 236, 121-130. doi:10.1016/j.cej.2013.09.033
  • Wang, Q., Niemi, T., Peltola, J., Kallio, S., Yang, H., Lu, J., & Wei, L. (2015). Particle size distribution in CPFD modeling of gas–solid flows in a CFB riser. Particuology, 21, 107–117. doi:10.1016/j.partic.2014.06.009
  • Wang, S., Luo, K., Yang, S., Hu, C., & Fan, J. (2017a) LES-DEM investigation of the time-related solid phase properties and improvements of flow uniformity in a dual-side refeed CFB. Chemical Engineering Journal, 313, 858–872. doi:10.1016/j.cej.2016.10.130
  • Wang, S., Luo, K., Hu, C., & Fan, J. (2017b). CFD-DEM study of the effect of cyclone arrangements on the gas-solid flow dynamics in the full-loop circulating fluidized bed. Chemical Engineering Science, 172, 199–215. doi:10.1016/j.ces.2017.05.052
  • Wang, S., Luo, K., Hu, C., Sun, L., & Fan, J. (2018). Effect of superficial gas velocity on solid behaviors in a full-loop CFB. Powder Technology, 333, 91–105. doi:10.1016/j.powtec.2018.04.011
  • Wen, C. Y., & Yu, Y. H. (1966). Mechanics of fluidization. The Chemical Engineering Progress Symposium Series, 162, 100-111.
  • Wu, Y., Peng, L. Qin, L., Wang, M., Gao, J., & Lan, X. (2018). Validation and application of CPFD models in simulating hydrodynamics and reactions in riser reactor with Geldart A particles. Powder Technology, 323, 269–283. doi:10.1016/j.powtec.2017.10.003
  • Xu, Y., Musser, J., Li, T., Gopalan, B., Panday, R., Tucker, J., Breault, G., Clarke, M. A., & Rogers, W. A. (2018). Numerical simulation and experimental study of the gas-solid flow behavior inside a full-loop circulating fluidized bed: evaluation of different drag models. Ind. Eng. Chem. Res., 57(2), 740–750. doi:10.1021/acs.iecr.7b03817
  • Verma, V. & Padding, J. T. (2020). A novel approach to MP-PIC: Continuum particle model for dense particle flows in fluidized beds. Chemical Engineering Science: X, 6, 100053. doi:10.1016/j.cesx.2019.100053
  • Verma, V., Padding, J. T., Deen, N. G., & Kuipers, J. A. M. (2015). Effect of bed size on hydrodynamics in 3-D gas-solid fluidized beds. AIChE Journal, 61(5), 1492–1506. doi:10.1002/aic.14738
  • Yang, S., Wang, S., Luo, K., Fan, J., & Chew, J. W. (2019). Numerical investigation of the backmixing and non-uniform characteristics in the three-dimensional full-loop circulating fluidized bed combustor with six parallel cyclones. Applied Thermal Engineering, 153, 524–535. doi:10.1016/j.applthermaleng.2019.03.032
  • Yang, S., & Wang, S. (2020). Eulerian-Langrangian simulation of the full-loop gas-solid hydrodynamics in a pilot-scale circulating fluidized bed. Powder Technology, 369, 223–237. doi:10.1016/j.powtec.2020.05.043
  • Zhang, N., Lu, B., Wang, W., & Li, J. (2010). 3D CFD simulation of hydrodynamics of a 150MWe circulating fluidized bed boiler. Chemical Engineering Journal, 162(2), 821–828. doi:10.1016/j.cej.2010.06.033
  • Zhang, Y., Zhao, Y., Lu, L., Ge, W., Wang, J., & Duan, C. (2017) Assessment of polydisperse drag models for the size segregation in a bubbling fluidized bed using discrete particle method. Chemical Engineering Science, 160, 106–112. doi:10.1016/j.ces.2016.11.028
  • Zhong, W., Yu, A., Zhou, G., Xie, J., & Zhang, H. (2016). CFD simulation of dense particulate reaction system: approaches, recent advances and applications. Chemical Engineering Science, 140, 16–43. doi:10.1016/j.ces.2015.09.035
  • Zhou, J., Grace, J. R., Qin, S., Brereton, C. M. H., Lim, C. J., & Zhu, J. (1994). Voidage profiles in a circulating fluidized bed of square cross-section. Chemical Engineering Science, 49(19), 3217–3226. doi:10.1016/0009-2509(94)E0125-A
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makine Mühendisliği
Yazarlar

Yelda Altınsoy 0000-0002-5277-6981

Ahmet Keçeci 0000-0001-6502-3172

Hüseyin Topal 0000-0001-7406-4398

Yayımlanma Tarihi 30 Aralık 2021
Gönderilme Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 4

Kaynak Göster

APA Altınsoy, Y., Keçeci, A., & Topal, H. (2021). Determination of the Bed Hydrodynamics by MFIX-PIC in the Biomass Gasification Process of Circulating Fluidized Bed. Gazi University Journal of Science Part A: Engineering and Innovation, 8(4), 551-569. https://doi.org/10.54287/gujsa.1030632