Year 2023,
Volume: 10 Issue: 1, 89 - 96, 28.03.2023
Dilan Ata
,
Muzaffer Balbaşı
,
Adem Tataroglu
References
- Ata, D., Altindal Yeriskin, S., Tataroglu, A., & Balbasi, M. (2022). Analysis of admittance measurements of Al/Gr-PVA/p-Si (MPS) structure. Journal of Physics and Chemistry of Solids, 169, 110861. doi:10.1016/j.jpcs.2022.110861
- Ben Halima, N. (2016). Poly(vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Advances, 6(46), 39823-39832. doi:10.1039/C6RA05742J
- Bin Mohd Yusoff, A. R. (2015). Graphene-based energy devices. Wiley-VCH Verlag.
- Brews, J. R., & Nicollian, E. H. (1984). Improved MOS capacitor measurements using the Q-C method, Solid-State Electronics, 27(11), 963-975. doi:10.1016/0038-1101(84)90070-4
- Bulinski, M. (2021). Metal doped PVA films for opto-electronics-optical and electronic properties, an overview. Molecules, 26(10), 2886. doi:10.3390/molecules26102886
- Buyukbas Ulusan, A., Tataroglu, A., Altindal, S., & Azizian-Kalandaragh, Y. (2021). Photoresponse characteristics of Au/(CoFe2O4-PVP)/n-Si/Au (MPS) diode. Journal of Materials Science: Materials in Electronics, 32(12), 15732-15739. doi:10.1007/s10854-021-06124-w
- Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109-162. doi:10.1103/RevModPhys.81.109
- Finch, C. A. (1973). Polyvinyl alcohol: Properties and applications. Wiley.
- Hashim, A. A. (2010). Polymer thin films. InTech.
- Jafar Mazumder, M. A., Sheardown, H., & Al-Ahmed, A. (Eds.). (2019). Functional polymers. Springer International Publishing.
- Karataş, Ş., & Yumuk, M. (2022). Electrical characteristics of Al/(GO:PTCDA)/p-type Si structure under dark and light illumination: photovoltaic properties at 40 mW cm−2. Journal of Materials Science: Materials in Electronics, 33(14), 10800-10813. doi:10.1007/s10854-022-08061-8
- Kim, H. (2016). Capacitance-voltage (C-V) characteristics of Cu/n-type InP Schottky diodes. Transactions on Electrical and Electronic Materials, 17(5), 293-296. doi:10.4313/TEEM.2016.17.5.293
- Lambada, D. R., Yang, S., Wang, Y., Ji, P., Shafique, S., & Wang, F. (2020). Investigation of Illumination Effects on the Electrical Properties of Au/GO/p-InP Heterojunction with a Graphene Oxide Interlayer. Nanomanufacturing and Metrology, 3(4), 269-281. doi:10.1007/s41871-020-00078-z
- Nicollian, E. H., & Brews, J. R. (1982). MOS physics and technology. Wiley.
- Nicollian, E. H., & Goetzberger, A. (1967). The Si‐SiO2 Interface — Electrical Properties as Determined by the Metal‐Insulator‐Silicon Conductance Technique. Bell System Technical Journal, 46(6), 1055-1133. doi:10.1002/j.1538-7305.1967.tb01727.x
- Pandey, S., & Kal, S. (1998). A simple approach to the capacitance technique for determination of interface state density of a metal-semiconductor contact. Solid-State Electronics, 42(6), 943-949. doi:10.1016/S0038-1101(97)00267-0
- Sadasivuni, K. K., Ponnamma, D., Kim, J., & Thomas, S. (2015). Graphene-based polymer nanocomposites in electronics. Springer International Publishing.
- Sang, M., Shin, J., Kim, K., & Yu, K. J. (2019). Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials, 9(3), 374. doi:10.3390/nano9030374
- Singh, J. (2003). Electronic and optoelectronic properties of semiconductor structures. Cambridge University Press.
- Sze, S. M. (1981). Physics of semiconductor devices. Wiley.
- Tan, S. O., Uslu Tecimer, H., Çiçek, O., Tecimer, H., & Altındal, Ş. (2017). Frequency dependent C–V and G/ω–V characteristics on the illumination-induced Au/ZnO/n-GaAs Schottky barrier diodes. Journal of Materials Science: Materials in Electronics, 28(6), 4951-4957. doi:10.1007/s10854-016-6147-0
- Tataroğlu, A., & Altındal, Ş. (2006). Characterization of current-voltage (I-V ) and capacitance-voltage-frequency (C-V-f ) features of Al/SiO2/p-Si (MIS) Schottky diodes. Microelectronic Engineering, 83(3), 582–588. doi:10.1016/j.mee.2005.12.014
- Tataroğlu, A., Altındal, Ş., & Azizian-Kalandaragh, Y. (2020). Electrical and photoresponse properties of CoSO4-PVP interlayer based MPS diodes. Journal of Materials Science: Materials in Electronics, 31(14), 11665-11672. doi:10.1007/s10854-020-03718-8
- Wang, J., Mu, X., & Sun, M. (2019). The thermal, electrical and thermoelectric properties of graphene nanomaterials. Nanomaterials, 9(2), 218. doi:10.3390/nano9020218
- Wood, D. (1994). Optoelectronic semiconductor devices. Prentice Hall.
Illumination Response of Impedance Properties of Al/Gr-PVA/p-Si (MPS) Device
Year 2023,
Volume: 10 Issue: 1, 89 - 96, 28.03.2023
Dilan Ata
,
Muzaffer Balbaşı
,
Adem Tataroglu
Abstract
Admittance measurements including capacitance (C) and conductance (G) of Al/Gr-PVA/p-Si (MPS) device were made at 500 kHz and under dark and 200 mW/cm2 conditions. The illumination response on the electric characteristics of the device was investigated using the C-2-V characteristics. It was observed that the electronic parameters of the device changed depending on the illumination conditions. The doping concentration, Fermi energy and barrier height were obtained using the C-2-V data. The surface state (Nss) was also obtained using capacitance data. The results show that the device can be used as a photocapacitor.
References
- Ata, D., Altindal Yeriskin, S., Tataroglu, A., & Balbasi, M. (2022). Analysis of admittance measurements of Al/Gr-PVA/p-Si (MPS) structure. Journal of Physics and Chemistry of Solids, 169, 110861. doi:10.1016/j.jpcs.2022.110861
- Ben Halima, N. (2016). Poly(vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Advances, 6(46), 39823-39832. doi:10.1039/C6RA05742J
- Bin Mohd Yusoff, A. R. (2015). Graphene-based energy devices. Wiley-VCH Verlag.
- Brews, J. R., & Nicollian, E. H. (1984). Improved MOS capacitor measurements using the Q-C method, Solid-State Electronics, 27(11), 963-975. doi:10.1016/0038-1101(84)90070-4
- Bulinski, M. (2021). Metal doped PVA films for opto-electronics-optical and electronic properties, an overview. Molecules, 26(10), 2886. doi:10.3390/molecules26102886
- Buyukbas Ulusan, A., Tataroglu, A., Altindal, S., & Azizian-Kalandaragh, Y. (2021). Photoresponse characteristics of Au/(CoFe2O4-PVP)/n-Si/Au (MPS) diode. Journal of Materials Science: Materials in Electronics, 32(12), 15732-15739. doi:10.1007/s10854-021-06124-w
- Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109-162. doi:10.1103/RevModPhys.81.109
- Finch, C. A. (1973). Polyvinyl alcohol: Properties and applications. Wiley.
- Hashim, A. A. (2010). Polymer thin films. InTech.
- Jafar Mazumder, M. A., Sheardown, H., & Al-Ahmed, A. (Eds.). (2019). Functional polymers. Springer International Publishing.
- Karataş, Ş., & Yumuk, M. (2022). Electrical characteristics of Al/(GO:PTCDA)/p-type Si structure under dark and light illumination: photovoltaic properties at 40 mW cm−2. Journal of Materials Science: Materials in Electronics, 33(14), 10800-10813. doi:10.1007/s10854-022-08061-8
- Kim, H. (2016). Capacitance-voltage (C-V) characteristics of Cu/n-type InP Schottky diodes. Transactions on Electrical and Electronic Materials, 17(5), 293-296. doi:10.4313/TEEM.2016.17.5.293
- Lambada, D. R., Yang, S., Wang, Y., Ji, P., Shafique, S., & Wang, F. (2020). Investigation of Illumination Effects on the Electrical Properties of Au/GO/p-InP Heterojunction with a Graphene Oxide Interlayer. Nanomanufacturing and Metrology, 3(4), 269-281. doi:10.1007/s41871-020-00078-z
- Nicollian, E. H., & Brews, J. R. (1982). MOS physics and technology. Wiley.
- Nicollian, E. H., & Goetzberger, A. (1967). The Si‐SiO2 Interface — Electrical Properties as Determined by the Metal‐Insulator‐Silicon Conductance Technique. Bell System Technical Journal, 46(6), 1055-1133. doi:10.1002/j.1538-7305.1967.tb01727.x
- Pandey, S., & Kal, S. (1998). A simple approach to the capacitance technique for determination of interface state density of a metal-semiconductor contact. Solid-State Electronics, 42(6), 943-949. doi:10.1016/S0038-1101(97)00267-0
- Sadasivuni, K. K., Ponnamma, D., Kim, J., & Thomas, S. (2015). Graphene-based polymer nanocomposites in electronics. Springer International Publishing.
- Sang, M., Shin, J., Kim, K., & Yu, K. J. (2019). Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials, 9(3), 374. doi:10.3390/nano9030374
- Singh, J. (2003). Electronic and optoelectronic properties of semiconductor structures. Cambridge University Press.
- Sze, S. M. (1981). Physics of semiconductor devices. Wiley.
- Tan, S. O., Uslu Tecimer, H., Çiçek, O., Tecimer, H., & Altındal, Ş. (2017). Frequency dependent C–V and G/ω–V characteristics on the illumination-induced Au/ZnO/n-GaAs Schottky barrier diodes. Journal of Materials Science: Materials in Electronics, 28(6), 4951-4957. doi:10.1007/s10854-016-6147-0
- Tataroğlu, A., & Altındal, Ş. (2006). Characterization of current-voltage (I-V ) and capacitance-voltage-frequency (C-V-f ) features of Al/SiO2/p-Si (MIS) Schottky diodes. Microelectronic Engineering, 83(3), 582–588. doi:10.1016/j.mee.2005.12.014
- Tataroğlu, A., Altındal, Ş., & Azizian-Kalandaragh, Y. (2020). Electrical and photoresponse properties of CoSO4-PVP interlayer based MPS diodes. Journal of Materials Science: Materials in Electronics, 31(14), 11665-11672. doi:10.1007/s10854-020-03718-8
- Wang, J., Mu, X., & Sun, M. (2019). The thermal, electrical and thermoelectric properties of graphene nanomaterials. Nanomaterials, 9(2), 218. doi:10.3390/nano9020218
- Wood, D. (1994). Optoelectronic semiconductor devices. Prentice Hall.