Research Article
BibTex RIS Cite

Photovoltaic Power Prediction with Teaching Learning Based Optimization Algorithm

Year 2024, Volume: 11 Issue: 4, 780 - 791, 30.12.2024
https://doi.org/10.54287/gujsa.1581828

Abstract

The need for electrical energy has increased considerably due to technological developments. Reducing costs and losses, especially in the supply of electrical energy, is among the goals of energy companies. Photovoltaic energy has been an important alternative in reducing energy costs. However, there are significant power quality problems in transferring the generated photovoltaic energy to the grid. Therefore, the generated photovoltaic energy needs to be accurately estimated to be transferred to the grid smoothly. In the literature, many forecasting models have been used for photovoltaic power forecasting. Each of these forecasting models has estimated photovoltaic power using different input parameters, different estimation intervals, and different estimation algorithms. This paper was conducted using the Teaching-Learning Based Optimization (TLBO) algorithm as an alternative approach to photovoltaic power forecasting models. According to the forecasting results, the root mean square error (RMSE) for the test subset was obtained as 270.32 kW, and the mean absolute percentage error (MAPE) was found to be 3.87%. These results indicate that the TLBO algorithm demonstrates high accuracy for photovoltaic power forecasting and provides an effective alternative model in this field.

References

  • Amarasinghe, G., & Abeygunawardane, S. (2018). An artificial neural network for solar power generation forecasting using weather parameters. In: Proceedings of the 112th Annual Sessions, Institution of Engineers Sri Lanka, (pp. 431-438), Colombo, Sri Lanka.
  • Cheng, Z., Liu, Q., & Xing, Y. (2019). A hybrid probabilistic estimation method for photovoltaic power generation forecasting. Energy Procedia, 158, 173-178. http://www.doi.org/10.1016/j.egypro.2019.01.066
  • Dandıl, E., & Gürgen, E. (2019). Yapay Sinir Ağları Kullanılarak Fotovoltaik Panel Güç Çıkışlarının Tahmini ve Sezgisel Algoritmalar ile Karşılaştırılması. Avrupa Bilim ve Teknoloji Dergisi, 16, 146-158. http://www.doi.org/10.31590/ejosat.540262
  • Das, S. (2021). Short term forecasting of solar radiation and power output of 89.6 kWp solar PV power plant. Materials Today: Proceedings, 39, 1959-1969. http://www.doi.org/10.1016/j.matpr.2020.08.449
  • Das, U. K., Tey, K. S., Seyedmahmoudian, M., Mekhilef, S., Idris, M. Y. I., Deventer, W. V., Horan, B. & Stojcevski, A. (2018). Forecasting of photovoltaic power generation and model optimization: A review. Renewable and Sustainable Energy Reviews, 81, 912-928. http://www.doi.org/10.1016/j.rser.2017.08.017
  • Dosdoğru, A. T., & İpek, A. B. (2022). Hybrid boosting algorithms and artificial neural network for wind speed prediction. International Journal of Hydrogen Energy, 47(3), 1449-1460. http://www.doi.org/10.1016/j.ijhydene.2021.10.154
  • Elsinga, B., & Van Sark, W. G. J. H. M. (2017). Short-term peer-to-peer solar forecasting in a network of photovoltaic systems. Applied Energy, 206, 1464-1483. http://www.doi.org/10.1016/j.apenergy.2017.09.115
  • Han, Y., Wang, N., Ma, M., Zhou, H., Dai, S., & Zhu, H. (2019). A PV power interval forecasting based on seasonal model and nonparametric estimation algorithm. Solar Energy, 184, 515-526. http://www.doi.org/10.1016/j.solener.2019.04.025
  • IRENA, International Renewable Energy Agency. (2024). Renewable capacity highlights. (Accessed:04/09/2024) https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2024/Mar/IRENA_RE_Capacity_Highlights_2024.pdf?rev=7692ae29458142dd8563618f496e0abb
  • Irmak, E., Yesilbudak, M., & Tasdemir, O. (2023, June 4-7). Daily prediction of PV power output using particulate matter parameter with artificial neural networks. In: Proceedings of the 11th International Conference on Smart Grid (icSmartGrid), (pp. 499-502). Paris, France. https://doi.org/10.1109/icSmartGrid58556.2023.10171103
  • Irmak, E., Yeşilbudak, M., & Taşdemir, O. (2024). Enhanced PV Power Prediction Considering PM10 Parameter by Hybrid JAYA-ANN Model. Electric Power Components and Systems, 52(11), 1998-2007. http://www.doi.org/10.1080/15325008.2024.2322668
  • Korkmaz, D. (2021). SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting. Applied Energy, 300, 117410. http://www.doi.org/10.1016/j.apenergy.2021.117410
  • Kleissl, J. (2013). Solar energy forecasting and resource assessment. Academic Press.
  • Li, P., Zhou, K., Lu, X., & Yang, S. (2020). A hybrid deep learning model for short-term PV power forecasting. Applied Energy, 259, 114216. http://www.doi.org/10.1016/j.apenergy.2019.114216
  • Liang, L., Su, T., Gao, Y., Qin, F., & Pan, M. (2023). FCDT-IWBOA-LSSVR: An innovative hybrid machine learning approach for efficient prediction of short-to-mid-term photovoltaic generation. Journal of Cleaner Production, 385, 135716. http://www.doi.org/10.1016/j.jclepro.2022.135716
  • Lin, W., Zhang, B., Li, H., & Lu, R. (2022). Multi-step prediction of photovoltaic power based on two-stage decomposition and BILSTM. Neurocomputing, 504, 56-67. http://www.doi.org/10.1016/j.neucom.2022.06.117
  • Liu, L., Zhao, Y., Chang, D., Xie, J., Ma, Z., Sun, Q., Yin, H., & Wennersten, R. (2018). Prediction of short-term PV power output and uncertainty analysis. Applied Energy, 228, 700-711. http://www.doi.org/10.1016/j.apenergy.2018.06.112
  • Ma, X., & Zhang, X. (2022). A short-term prediction model to forecast power of photovoltaic based on MFA-Elman. Energy Reports, 8, 495-507. http://www.doi.org/10.1016/j.egyr.2022.01.213
  • Maghami, M. R., Hizam, H., Gomes, C., Radzi, M. A., Rezadad, M. I., & Hajighorbani, S. (2016). Power loss due to soiling on solar panel: A review. Renewable and Sustainable Energy Reviews, 59, 1307-1316. http://www.doi.org/10.1016/j.rser.2016.01.044
  • Moreira, M. O., Balestrassi, P. P., Paiva, A. P., Ribeiro, P. F., & Bonatto, B. D. (2021). Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting. Renewable and Sustainable Energy Reviews, 135, 110450. http://www.doi.org/10.1016/j.rser.2020.110450
  • Rao, R. V., & Patel, V. (2013). An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems. Scientia Iranica, 20(3), 710-720. http://www.doi.org/10.1016/j.scient.2012.12.005
  • Rao, R. V., Savsani, V. J., & Balic, J. (2012). Teaching-learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems. Engineering Optimization, 44(12), 1447-1462. http://www.doi.org/10.1080/0305215X.2011.652103
  • Qu, Y., Xu, J., Sun, Y., & Liu, D. (2021). A temporal distributed hybrid deep learning model for day-ahead distributed PV power forecasting. Applied Energy, 304, 117704. http://www.doi.org/10.1016/j.apenergy.2021.117704
  • Saber, E. M., Lee, S. E., Manthapuri, S., Yi, W., & Deb, C. (2014). PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings. Energy, 71, 588-595. http://www.doi.org/10.1016/j.energy.2014.04.115
  • Tang, Y., Yang, K., Zhang, S., & Zhang, Z. (2022). Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy. Renewable and Sustainable Energy Reviews, 162, 112473. http://www.doi.org/10.1016/j.rser.2022.112473
  • Theocharides, S., Makrides, G., Livera, A., Theristis, M., Kaimakis, P., & Georghiou, G. E. (2020). Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing. Applied Energy, 268, 115023. http://www.doi.org/10.1016/j.apenergy.2020.115023
  • VanDeventer, W., Jamei, E., Thirunavukkarasu, G. S., Seyedmahmoudian, M., Soon, T. K., Horan, B., Mekhilef. S., & Stojcevski, A. (2019). Short-term PV power forecasting using hybrid GASVM technique. Renewable Energy, 140, 367-379. http://www.doi.org/10.1016/j.renene.2019.02.087
Year 2024, Volume: 11 Issue: 4, 780 - 791, 30.12.2024
https://doi.org/10.54287/gujsa.1581828

Abstract

References

  • Amarasinghe, G., & Abeygunawardane, S. (2018). An artificial neural network for solar power generation forecasting using weather parameters. In: Proceedings of the 112th Annual Sessions, Institution of Engineers Sri Lanka, (pp. 431-438), Colombo, Sri Lanka.
  • Cheng, Z., Liu, Q., & Xing, Y. (2019). A hybrid probabilistic estimation method for photovoltaic power generation forecasting. Energy Procedia, 158, 173-178. http://www.doi.org/10.1016/j.egypro.2019.01.066
  • Dandıl, E., & Gürgen, E. (2019). Yapay Sinir Ağları Kullanılarak Fotovoltaik Panel Güç Çıkışlarının Tahmini ve Sezgisel Algoritmalar ile Karşılaştırılması. Avrupa Bilim ve Teknoloji Dergisi, 16, 146-158. http://www.doi.org/10.31590/ejosat.540262
  • Das, S. (2021). Short term forecasting of solar radiation and power output of 89.6 kWp solar PV power plant. Materials Today: Proceedings, 39, 1959-1969. http://www.doi.org/10.1016/j.matpr.2020.08.449
  • Das, U. K., Tey, K. S., Seyedmahmoudian, M., Mekhilef, S., Idris, M. Y. I., Deventer, W. V., Horan, B. & Stojcevski, A. (2018). Forecasting of photovoltaic power generation and model optimization: A review. Renewable and Sustainable Energy Reviews, 81, 912-928. http://www.doi.org/10.1016/j.rser.2017.08.017
  • Dosdoğru, A. T., & İpek, A. B. (2022). Hybrid boosting algorithms and artificial neural network for wind speed prediction. International Journal of Hydrogen Energy, 47(3), 1449-1460. http://www.doi.org/10.1016/j.ijhydene.2021.10.154
  • Elsinga, B., & Van Sark, W. G. J. H. M. (2017). Short-term peer-to-peer solar forecasting in a network of photovoltaic systems. Applied Energy, 206, 1464-1483. http://www.doi.org/10.1016/j.apenergy.2017.09.115
  • Han, Y., Wang, N., Ma, M., Zhou, H., Dai, S., & Zhu, H. (2019). A PV power interval forecasting based on seasonal model and nonparametric estimation algorithm. Solar Energy, 184, 515-526. http://www.doi.org/10.1016/j.solener.2019.04.025
  • IRENA, International Renewable Energy Agency. (2024). Renewable capacity highlights. (Accessed:04/09/2024) https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2024/Mar/IRENA_RE_Capacity_Highlights_2024.pdf?rev=7692ae29458142dd8563618f496e0abb
  • Irmak, E., Yesilbudak, M., & Tasdemir, O. (2023, June 4-7). Daily prediction of PV power output using particulate matter parameter with artificial neural networks. In: Proceedings of the 11th International Conference on Smart Grid (icSmartGrid), (pp. 499-502). Paris, France. https://doi.org/10.1109/icSmartGrid58556.2023.10171103
  • Irmak, E., Yeşilbudak, M., & Taşdemir, O. (2024). Enhanced PV Power Prediction Considering PM10 Parameter by Hybrid JAYA-ANN Model. Electric Power Components and Systems, 52(11), 1998-2007. http://www.doi.org/10.1080/15325008.2024.2322668
  • Korkmaz, D. (2021). SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting. Applied Energy, 300, 117410. http://www.doi.org/10.1016/j.apenergy.2021.117410
  • Kleissl, J. (2013). Solar energy forecasting and resource assessment. Academic Press.
  • Li, P., Zhou, K., Lu, X., & Yang, S. (2020). A hybrid deep learning model for short-term PV power forecasting. Applied Energy, 259, 114216. http://www.doi.org/10.1016/j.apenergy.2019.114216
  • Liang, L., Su, T., Gao, Y., Qin, F., & Pan, M. (2023). FCDT-IWBOA-LSSVR: An innovative hybrid machine learning approach for efficient prediction of short-to-mid-term photovoltaic generation. Journal of Cleaner Production, 385, 135716. http://www.doi.org/10.1016/j.jclepro.2022.135716
  • Lin, W., Zhang, B., Li, H., & Lu, R. (2022). Multi-step prediction of photovoltaic power based on two-stage decomposition and BILSTM. Neurocomputing, 504, 56-67. http://www.doi.org/10.1016/j.neucom.2022.06.117
  • Liu, L., Zhao, Y., Chang, D., Xie, J., Ma, Z., Sun, Q., Yin, H., & Wennersten, R. (2018). Prediction of short-term PV power output and uncertainty analysis. Applied Energy, 228, 700-711. http://www.doi.org/10.1016/j.apenergy.2018.06.112
  • Ma, X., & Zhang, X. (2022). A short-term prediction model to forecast power of photovoltaic based on MFA-Elman. Energy Reports, 8, 495-507. http://www.doi.org/10.1016/j.egyr.2022.01.213
  • Maghami, M. R., Hizam, H., Gomes, C., Radzi, M. A., Rezadad, M. I., & Hajighorbani, S. (2016). Power loss due to soiling on solar panel: A review. Renewable and Sustainable Energy Reviews, 59, 1307-1316. http://www.doi.org/10.1016/j.rser.2016.01.044
  • Moreira, M. O., Balestrassi, P. P., Paiva, A. P., Ribeiro, P. F., & Bonatto, B. D. (2021). Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting. Renewable and Sustainable Energy Reviews, 135, 110450. http://www.doi.org/10.1016/j.rser.2020.110450
  • Rao, R. V., & Patel, V. (2013). An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems. Scientia Iranica, 20(3), 710-720. http://www.doi.org/10.1016/j.scient.2012.12.005
  • Rao, R. V., Savsani, V. J., & Balic, J. (2012). Teaching-learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems. Engineering Optimization, 44(12), 1447-1462. http://www.doi.org/10.1080/0305215X.2011.652103
  • Qu, Y., Xu, J., Sun, Y., & Liu, D. (2021). A temporal distributed hybrid deep learning model for day-ahead distributed PV power forecasting. Applied Energy, 304, 117704. http://www.doi.org/10.1016/j.apenergy.2021.117704
  • Saber, E. M., Lee, S. E., Manthapuri, S., Yi, W., & Deb, C. (2014). PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings. Energy, 71, 588-595. http://www.doi.org/10.1016/j.energy.2014.04.115
  • Tang, Y., Yang, K., Zhang, S., & Zhang, Z. (2022). Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy. Renewable and Sustainable Energy Reviews, 162, 112473. http://www.doi.org/10.1016/j.rser.2022.112473
  • Theocharides, S., Makrides, G., Livera, A., Theristis, M., Kaimakis, P., & Georghiou, G. E. (2020). Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing. Applied Energy, 268, 115023. http://www.doi.org/10.1016/j.apenergy.2020.115023
  • VanDeventer, W., Jamei, E., Thirunavukkarasu, G. S., Seyedmahmoudian, M., Soon, T. K., Horan, B., Mekhilef. S., & Stojcevski, A. (2019). Short-term PV power forecasting using hybrid GASVM technique. Renewable Energy, 140, 367-379. http://www.doi.org/10.1016/j.renene.2019.02.087
There are 27 citations in total.

Details

Primary Language English
Subjects Photovoltaic Power Systems, Electrical Engineering (Other)
Journal Section Electrical Engineering
Authors

Oğuz Taşdemir 0000-0003-1782-0024

Publication Date December 30, 2024
Submission Date November 8, 2024
Acceptance Date December 1, 2024
Published in Issue Year 2024 Volume: 11 Issue: 4

Cite

APA Taşdemir, O. (2024). Photovoltaic Power Prediction with Teaching Learning Based Optimization Algorithm. Gazi University Journal of Science Part A: Engineering and Innovation, 11(4), 780-791. https://doi.org/10.54287/gujsa.1581828