Year 2023,
, 249 - 257, 30.09.2023
Tolga Hayıt
,
Sadık Eren Köse
Project Number
1919B012107851
References
- 1. Maslow AH. A theory of human motivation. Psychol Rev. 1943
50(4):370-396.
- 2. Agrios NG. Plant pathology. San Diego (USA): Elsevier Academic
Press; 2005.
- 3. Polat K. Tarım Ürünleri Piyasaları [Internet]. Turkey (SGB):
Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü; 2021 [reviewed
2022 Dec 15; cited 2022 Dec 20]. Available from: https://arastirma.
tarimorman.gov.tr/tepge/Belgeler/PDF%20Tar%C4%B1m%20
%C3%9Cr%C3%BCnleri%20Piyasalar%C4%B1/2021-Ocak%20
Ta r%C4%B1m%20%C3%9Cr%C3%BCnler i%20Raporu/
Bu%C4%9Fday,%20Ocak%202021,%20Tar%C4%B1m%20
%C3%9Cr%C3%BCnleri%20Piyasa%20Raporu.pdf
- 4. FAO. World Food and Agriculture – Statistical Yearbook 2022.
Rome: https://doi.org/10.4060/cc2211en; 2022.
- 5. Babaroğlu NE, Akci E, Çulcu M, Yalçın F. Süne ve Mücadelesi.
Ankara (TR): Tarım ve Orman Bakanlığı Gıda ve Kontrol Genel
Müdürlüğü; 2020.
- 6. Zirai Mücadele Teknik Talimatları Cilt 1. Ankara (TR): Gıda Tarım
ve Hayvancılık Bakanlığı Tarımsal Araştırmalar ve Politikalar
Genel Müdürlüğü Bitki Sağlığı Araştırmaları Daire Başkanlığı;
2008.
- 7. Hububat Zararlıları [Internet]. [place unknown: publisher
unknown]; [reviewed 2022 Dec 16; cited 2022 Dec 20]. Available
from: https://arastirma.tarimorman.gov.tr/zmmae/Belgeler/
Sol%20Menu/Zirai%20M%C3%BCcadele%20Rehberi/Hububat/
Hububat-Zararl%C4%B1.pdf
- 8. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature.
2015;521(7553):436-444.
- 9. Hayit T, Erbay H, Varçın F, Hayit F, Akci N. Determination of the
severity level of yellow rust disease in wheat by using convolutional
neural networks. JPP. 2021;103(3):923-934.
- 10. Hayıt T, Erbay H, Varçın F, Hayit F, Akci N. The classification of
wheat yellow rust disease based on a combination of textural and
deep features. Multimedia Tools and Applications. 2023:1-19.
- 11. Zhu LQ, Ma MY, Zhang Z, et al. Hybrid deep learning for
automated lepidopteran insect image classification. Oriental
Insects. 2017;51(2):79-91.
- 12. Lim S, Kim S, Kim D. Performance effect analysis for insect
classification using convolutional neural network. In 2017 7th
IEEE International Conference on Control System, Computing and
Engineering. 2017; Penang, Malaysia; 2017. p. 210-215.
- 13. Xia D, Chen P, Wang B, Zhang J, Xie C. Insect detection and
classification based on an improved convolutional neural network.
Sensors. 2018;18(12):4169.
- 14. Marques ACR, Raimundo MM, Cavalheiro EMB, et al. Ant genera
identification using an ensemble of convolutional neural networks.
Plos One. 2018;13(1):e0192011.
- 15. Lu CY, Rustia DJA, Lin TT. Generative adversarial network based
image augmentation for insect pest classification enhancement.
IFAC-PapersOnLine. 2019;52(30):1-5.
- 16. Thenmozhi K, Reddy US. Crop pest classification based on deep
convolutional neural network and transfer learning. Comput
Electron Agric. 2019;164(104906).
- 17. Hansen OL, Svenning JC, Olsen K, et al. Species‐level image
classification with convolutional neural network enables insect
identification from habitus images. Ecol Evol. 2020;10(2):737-747.
- 18. Nanni L, Maguolo G, Pancino F. Insect pest image detection
and recognition based on bio-inspired methods. Ecol Inform.
2020;57(101089).
- 19. Ayan E, Erbay H, Varçın F. Crop pest classification with a genetic
algorithm-based weighted ensemble of deep convolutional neural
networks. Comput Electron Agric. 2020;179(105809).
- 20. Visalli F, Bonacci T, Borghese NA. Insects image classification
through deep convolutional neural networks. Prog Artif Intell.
2021:217-228.
- 21. Kasinathan T, Singaraju D, Uyyala SR. Insect classification and
detection in field crops using modern machine learning techniques.
Inf Process Agric. 2021;8(3):446-457.
- 22. Zheng T, Yang X, Lv J, Li M, Wang S, Li W. An efficient mobile
model for insect image classification in the field pest management.
IJEST. 2023;39(101335).
- 23. GBIF.org. What is GBIF? [Internet]. Copenhage (DK); 2022
[reviewed 2023 Jan 05; cited 2023 Jan 20]. Available from: https://
www.gbif.org/what-is-gbif
- 24. GBIF.org. Aelia images. Copenhage (DK); 2023 [reviewed 2023
Jan 10; cited 2023 Jan 10]. Available from: https://doi.org/10.15468/
dl.x52gxq
- 25. GBIF.org. Anisoplia images. Copenhage (DK); 2023 [reviewed 2023
Jan 08; cited 2023 Jan 08]. Available from: https://doi.org/10.15468/
dl.3k29je
- 26. GBIF.org. Eurygaster images. Copenhage (DK); 2023 [reviewed
2023 Jan 08; cited 2023 Jan 08]. Available from: https://doi.
org/10.15468/dl.7sz7cp
- 27. GBIF.org, Pachytychius images. Copenhage (DK); 2023 [reviewed
2023 Jan 08; cited 2023 Jan 08]. Available from: https://doi.
org/10.15468/dl.fh8q57
- 28. GBIF.org. Zabrus images. Copenhage (DK); 2023 [reviewed 2023
Jan 05; cited 2023 Jan 05]. Available from: https://doi.org/10.15468/
dl.tpq3zy
- 29. Moreno-Barea FJ, Jerez JM, Franco L. Improving classification
accuracy using data augmentation on small data sets. Expert Syst
Appl. 2020;161(113696).
- 30. Tian X, Ding CH, Chen S, Luo B, Wang X. Regularization graph
convolutional networks with data augmentation. Neurocomputing.
2021;436:92-102.
- 31. Oyelade ON, Ezugwu AE. A deep learning model using data
augmentation for detection of architectural distortion in whole and
patches of images. Biomed Signal.2021;65(102366).
- 32. Mohanty SP, Hughes DP, Salathé M. Using deep learning for imagebased
plant disease detection. Front Plant Sci. 2016;7(1419).
- 33. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with
deep convolutional neural networks. Commun. 2017;60(6):84-90.
- 34. He K, Zhang X, Ren S, Sun J. Deep residual learning for image
recognition. Proceedings of the IEEE conference on computer
vision and pattern recognition; 2016; Las Vegas, NV, USA.
- 35. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking
the inception architecture for computer vision. Proceedings of the
IEEE conference on computer vision and pattern recognition; 2016.
p. 2818-2826.
- 36. Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions.
Proceedings of the IEEE conference on computer vision and pattern
recognition; 2015. p. 1-9.
- 37. Sultana F, Sufian A, Dutta P. Advancements in image classification
using convolutional neural network. In 2018 Fourth International
Conference on Research in Computational Intelligence and
Communication Networks (ICRCICN). 2018 Nov. p. 122-129.
Investigation of Deep Learning Approaches for Identification of Important Wheat Pests in Central Anatolia
Year 2023,
, 249 - 257, 30.09.2023
Tolga Hayıt
,
Sadık Eren Köse
Abstract
Artificial intelligence-based systems play a crucial role in Integrated Pest Management studies. It is important to develop and support such systems for controlling wheat pests, which cause significant losses in wheat production which is strategic importance, particularly in Turkey. This study employed various pre-trained deep learning approaches to identify key wheat pests in the Central Anatolia Region, namely Aelia spp., Anisoplia spp., Eurygaster spp., Pachytychius hordei, and Zabrus spp. The models' classification success was determined using open and original datasets. Among the models, the ResNet-18 model outperformed others, achieving a classification success rate of 99%. Furthermore, each model was tested with original images collected during field studies to assess their effectiveness. The results demonstrate that pre-trained deep learning models can be utilized for the identification of important wheat pests in Central Anatolia as part of Integrated Pest Management.
Supporting Institution
Science Fellowships and Grant Programmes Department (TUBİTAK BİDEB)
Project Number
1919B012107851
Thanks
This study was supported by the project 1919B012107851 no. within the scope of the 2209-A University Students Research Projects Support Program carried out by Science Fellowships and Grant Programmes Department (TUBİTAK BİDEB). We also thank Directorate of Plant Protection Central Research Institute, Republic of Türkiye Ministry of Agriculture and Forestry for support in generating the original data set.
References
- 1. Maslow AH. A theory of human motivation. Psychol Rev. 1943
50(4):370-396.
- 2. Agrios NG. Plant pathology. San Diego (USA): Elsevier Academic
Press; 2005.
- 3. Polat K. Tarım Ürünleri Piyasaları [Internet]. Turkey (SGB):
Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü; 2021 [reviewed
2022 Dec 15; cited 2022 Dec 20]. Available from: https://arastirma.
tarimorman.gov.tr/tepge/Belgeler/PDF%20Tar%C4%B1m%20
%C3%9Cr%C3%BCnleri%20Piyasalar%C4%B1/2021-Ocak%20
Ta r%C4%B1m%20%C3%9Cr%C3%BCnler i%20Raporu/
Bu%C4%9Fday,%20Ocak%202021,%20Tar%C4%B1m%20
%C3%9Cr%C3%BCnleri%20Piyasa%20Raporu.pdf
- 4. FAO. World Food and Agriculture – Statistical Yearbook 2022.
Rome: https://doi.org/10.4060/cc2211en; 2022.
- 5. Babaroğlu NE, Akci E, Çulcu M, Yalçın F. Süne ve Mücadelesi.
Ankara (TR): Tarım ve Orman Bakanlığı Gıda ve Kontrol Genel
Müdürlüğü; 2020.
- 6. Zirai Mücadele Teknik Talimatları Cilt 1. Ankara (TR): Gıda Tarım
ve Hayvancılık Bakanlığı Tarımsal Araştırmalar ve Politikalar
Genel Müdürlüğü Bitki Sağlığı Araştırmaları Daire Başkanlığı;
2008.
- 7. Hububat Zararlıları [Internet]. [place unknown: publisher
unknown]; [reviewed 2022 Dec 16; cited 2022 Dec 20]. Available
from: https://arastirma.tarimorman.gov.tr/zmmae/Belgeler/
Sol%20Menu/Zirai%20M%C3%BCcadele%20Rehberi/Hububat/
Hububat-Zararl%C4%B1.pdf
- 8. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature.
2015;521(7553):436-444.
- 9. Hayit T, Erbay H, Varçın F, Hayit F, Akci N. Determination of the
severity level of yellow rust disease in wheat by using convolutional
neural networks. JPP. 2021;103(3):923-934.
- 10. Hayıt T, Erbay H, Varçın F, Hayit F, Akci N. The classification of
wheat yellow rust disease based on a combination of textural and
deep features. Multimedia Tools and Applications. 2023:1-19.
- 11. Zhu LQ, Ma MY, Zhang Z, et al. Hybrid deep learning for
automated lepidopteran insect image classification. Oriental
Insects. 2017;51(2):79-91.
- 12. Lim S, Kim S, Kim D. Performance effect analysis for insect
classification using convolutional neural network. In 2017 7th
IEEE International Conference on Control System, Computing and
Engineering. 2017; Penang, Malaysia; 2017. p. 210-215.
- 13. Xia D, Chen P, Wang B, Zhang J, Xie C. Insect detection and
classification based on an improved convolutional neural network.
Sensors. 2018;18(12):4169.
- 14. Marques ACR, Raimundo MM, Cavalheiro EMB, et al. Ant genera
identification using an ensemble of convolutional neural networks.
Plos One. 2018;13(1):e0192011.
- 15. Lu CY, Rustia DJA, Lin TT. Generative adversarial network based
image augmentation for insect pest classification enhancement.
IFAC-PapersOnLine. 2019;52(30):1-5.
- 16. Thenmozhi K, Reddy US. Crop pest classification based on deep
convolutional neural network and transfer learning. Comput
Electron Agric. 2019;164(104906).
- 17. Hansen OL, Svenning JC, Olsen K, et al. Species‐level image
classification with convolutional neural network enables insect
identification from habitus images. Ecol Evol. 2020;10(2):737-747.
- 18. Nanni L, Maguolo G, Pancino F. Insect pest image detection
and recognition based on bio-inspired methods. Ecol Inform.
2020;57(101089).
- 19. Ayan E, Erbay H, Varçın F. Crop pest classification with a genetic
algorithm-based weighted ensemble of deep convolutional neural
networks. Comput Electron Agric. 2020;179(105809).
- 20. Visalli F, Bonacci T, Borghese NA. Insects image classification
through deep convolutional neural networks. Prog Artif Intell.
2021:217-228.
- 21. Kasinathan T, Singaraju D, Uyyala SR. Insect classification and
detection in field crops using modern machine learning techniques.
Inf Process Agric. 2021;8(3):446-457.
- 22. Zheng T, Yang X, Lv J, Li M, Wang S, Li W. An efficient mobile
model for insect image classification in the field pest management.
IJEST. 2023;39(101335).
- 23. GBIF.org. What is GBIF? [Internet]. Copenhage (DK); 2022
[reviewed 2023 Jan 05; cited 2023 Jan 20]. Available from: https://
www.gbif.org/what-is-gbif
- 24. GBIF.org. Aelia images. Copenhage (DK); 2023 [reviewed 2023
Jan 10; cited 2023 Jan 10]. Available from: https://doi.org/10.15468/
dl.x52gxq
- 25. GBIF.org. Anisoplia images. Copenhage (DK); 2023 [reviewed 2023
Jan 08; cited 2023 Jan 08]. Available from: https://doi.org/10.15468/
dl.3k29je
- 26. GBIF.org. Eurygaster images. Copenhage (DK); 2023 [reviewed
2023 Jan 08; cited 2023 Jan 08]. Available from: https://doi.
org/10.15468/dl.7sz7cp
- 27. GBIF.org, Pachytychius images. Copenhage (DK); 2023 [reviewed
2023 Jan 08; cited 2023 Jan 08]. Available from: https://doi.
org/10.15468/dl.fh8q57
- 28. GBIF.org. Zabrus images. Copenhage (DK); 2023 [reviewed 2023
Jan 05; cited 2023 Jan 05]. Available from: https://doi.org/10.15468/
dl.tpq3zy
- 29. Moreno-Barea FJ, Jerez JM, Franco L. Improving classification
accuracy using data augmentation on small data sets. Expert Syst
Appl. 2020;161(113696).
- 30. Tian X, Ding CH, Chen S, Luo B, Wang X. Regularization graph
convolutional networks with data augmentation. Neurocomputing.
2021;436:92-102.
- 31. Oyelade ON, Ezugwu AE. A deep learning model using data
augmentation for detection of architectural distortion in whole and
patches of images. Biomed Signal.2021;65(102366).
- 32. Mohanty SP, Hughes DP, Salathé M. Using deep learning for imagebased
plant disease detection. Front Plant Sci. 2016;7(1419).
- 33. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with
deep convolutional neural networks. Commun. 2017;60(6):84-90.
- 34. He K, Zhang X, Ren S, Sun J. Deep residual learning for image
recognition. Proceedings of the IEEE conference on computer
vision and pattern recognition; 2016; Las Vegas, NV, USA.
- 35. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking
the inception architecture for computer vision. Proceedings of the
IEEE conference on computer vision and pattern recognition; 2016.
p. 2818-2826.
- 36. Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions.
Proceedings of the IEEE conference on computer vision and pattern
recognition; 2015. p. 1-9.
- 37. Sultana F, Sufian A, Dutta P. Advancements in image classification
using convolutional neural network. In 2018 Fourth International
Conference on Research in Computational Intelligence and
Communication Networks (ICRCICN). 2018 Nov. p. 122-129.