Research Article
BibTex RIS Cite

Year 2025, Volume: 12 Issue: 2, 101 - 110, 30.06.2025
https://doi.org/10.17350/HJSE19030000356

Abstract

References

  • 1. Chen YQ, Wang Z. Formation control: a review and a new consideration. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2005 Aug 2-6; Edmonton, Canada. New York (US): IEEE; 2005. p. 3181–6.
  • 2. Xu T, Liu J, Zhang Z, Chen G, Cui D, Li H. Distributed mpc for trajectory tracking and formation control of multi-uavs with leader-follower structure. IEEE Access. 2023;11:128762–128773.
  • 3. Cai Z, Wang L, Zhao J, Wu K, Wang Y. Virtual target guidance-based distributed model predictive control for formation control of multiple uavs. Chin J Aeronaut. 2020;33(3):1037–56.
  • 4. Vargas S, Becerra HM, Hayet J-B. MPC-based distributed formation control of multiple quadcopters with obstacle avoidance and connectivity maintenance. Control Eng Pract. 2022;121:105054.
  • 5. Cai Z, Zhou H, Zhao J, Wu K, Wang Y. Formation control of multiple unmanned aerial vehicles by event-triggered distributed model predictive control. IEEE Access. 2018;6:55614–27.
  • 6. Zhao W, Go TH. Quadcopter formation flight control combining mpc and robust feedback linearization. J Franklin Inst. 2014;351(3):1335–55.
  • 7. Xiao H, Li Z, Chen CP. Formation control of leader–follower mobile robots’ systems using model predictive control based on neural-dynamic optimization. IEEE Trans Ind Electron. 2016;63(9):5752–62.
  • 8. Kuriki Y, Namerikawa T. Formation control with collision avoidance for a multi-uav system using decentralized mpc and consensus-based control. SICE J Control Meas Syst Integr. 2015;8(4):285–94.
  • 9. Ille M, Namerikawa T. Collision avoidance between multi-uav-systems considering formation control using mpc. In: 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM); 2017 Jul 3-7; Munich, Germany. New York (US): IEEE; 2017. p.651–6.
  • 10. Droge G. Distributed virtual leader moving formation control using behavior-based mpc. In: 2015 American Control Conference (ACC); 2015 Jul 1-3; Chicago, US. New York (US): IEEE; 2015. p. 2323–8.
  • 11. Zhang K, Sun Q, Shi Y. Trajectory tracking control of autonomous ground vehicles using adaptive learning mpc. IEEE Trans Neural Netw Learn Syst. 2021;32(12):5554–64.
  • 12. Oyelere SS. The application of model predictive control (mpc) to fast systems such as autonomous ground vehicles (agv). IOSR J Comput Eng. 2014;3(3):27–37.
  • 13. Liu J, Jayakumar P, Stein JL, Ersal T. A nonlinear model predictive control formulation for obstacle avoidance in high-speed autonomous ground vehicles in unstructured environments. Veh Syst Dyn. 2018;56(6):853–82.
  • 14. Fukushima H, Kon K, Matsuno F. Model predictive formation control using branch-and-bound compatible with collision avoidance problems. IEEE Trans Robot. 2013;29(5):1308–17.
  • 15. Zang Z, Gong J, Li Z, Song J, Liu H, Gong C, et al. Formation trajectory tracking control of utvs: A coupling multi-objective iterative distributed model predictive control approach. IEEE Trans Intell Veh. 2022;8(3):2222–32.
  • 16. Dong Z, Zhang Z, Qi S, Zhang H, Li J, Liu Y. Autonomous cooperative formation control of underactuated usvs based on improved mpc in complex ocean environment. Ocean Eng. 2023;270:113633.
  • 17. Eskandarpour A, Majd VJ. Cooperative formation control of quadrotors with obstacle avoidance and self collisions based on a hierarchical mpc approach. In: 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM); 2014 Oct 15-17; Tehran, Iran. New York (US): IEEE; 2014. p. 351–6.
  • 18. Huang J, Ji Z, Xiao S, Jia C, Jia Y, Wang X. Multi-agent vehicle formation control based on mpc and particle swarm optimization algorithm. In: 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC); 2022 Mar 25-27; Chongqing, China. New York (US): IEEE; 2022. p. 288–92.
  • 19. Li S, Song Q. Cooperative control of multiple agvs based on multi-agent reinforcement learning. In: 2023 IEEE International Conference on Unmanned Systems (ICUS); 2023 Mar 27-29; Beijing, China. New York (US): IEEE; 2023. p. 512–7.
  • 20. Van Parys R, Pipeleers G. Distributed mpc for multi-vehicle systems moving in formation. Robot Auton Syst. 2017;97:144–52.
  • 21. Yu S, Hirche M, Huang Y, Chen H, Allgöwer F. Model predictive control for autonomous ground vehicles: A review. Autom Intell Syst. 2021;1:1–17.
  • 22. Shen W, Wu D. Path planning of an agv based on artificial potential field and model predictive control. In: 2021 33rd Chinese Control and Decision Conference (CCDC); 2021 May 28-30; Kunming, China. New York (US): IEEE; 2021. p. 6925–30.
  • 23. Zhang J, Yan J, Zhang P. Multi-uav formation control based on a novel back-stepping approach. IEEE Trans Veh Technol. 2020;69(3):2437–48.
  • 24. Wang Y, Yang Y, Pu Y, Manzie C. Path following by formations of agents with collision avoidance guarantees using distributed model predictive control. In: 2021 American Control Conference (ACC); 2021 May 26-28; New Orleans, US. New York (US): IEEE; 2021. p. 3352–7.
  • 25. Qian X, De La Fortelle A, Moutarde F. A hierarchical model predictive control framework for on-road formation control of autonomous vehicles. In: 2016 IEEE Intelligent Vehicles Symposium (IV); 2016 Jun 19-22; Gothenburg, Sweden. New York (US): IEEE; 2016. p. 376–81.
  • 26. Alonso-Mora J, Baker S, Rus D. Multi-robot formation control and object transport in dynamic environments via constrained optimization. Int J Robot Res. 2017;36(9):1000–21.
  • 27. Wei H, Shi Y. MPC-based motion planning and control enables smarter and safer autonomous marine vehicles: Perspectives and a tutorial survey. IEEE/CAA J Autom Sin. 2022;10(1):8–24.

Nonlinear MPC-Based Formation Control for Autonomous Ground Vehicles with Dynamic Geometric Patterns

Year 2025, Volume: 12 Issue: 2, 101 - 110, 30.06.2025
https://doi.org/10.17350/HJSE19030000356

Abstract

This paper presents a nonlinear model predictive control (NMPC) framework for real-time formation control of autonomous ground vehicles (AGVs) operating under dynamic geometric patterns. The proposed method integrates a nonlinear kinematic bicycle model with a time-varying linearization strategy and constrained quadratic optimization to compute control inputs for each follower agent. Formation references are generated online using geometric transformation functions, enabling flexible spatial configurations such as line, rectangular, half-circle, and V-shaped formations. An exponential convergence model ensures smooth trajectory tracking, while input constraints are enforced at each control step. The controller is decentralized and scalable, with each agent solving its own NMPC problem using leader pose information. Extensive simulations validate the approach across multiple formations, demonstrating accurate tracking, constraint satisfaction, and real-time feasibility. The results confirm that the proposed NMPC architecture provides a unified and modular solution for multi-AGV formation control under nonlinear dynamics.

References

  • 1. Chen YQ, Wang Z. Formation control: a review and a new consideration. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2005 Aug 2-6; Edmonton, Canada. New York (US): IEEE; 2005. p. 3181–6.
  • 2. Xu T, Liu J, Zhang Z, Chen G, Cui D, Li H. Distributed mpc for trajectory tracking and formation control of multi-uavs with leader-follower structure. IEEE Access. 2023;11:128762–128773.
  • 3. Cai Z, Wang L, Zhao J, Wu K, Wang Y. Virtual target guidance-based distributed model predictive control for formation control of multiple uavs. Chin J Aeronaut. 2020;33(3):1037–56.
  • 4. Vargas S, Becerra HM, Hayet J-B. MPC-based distributed formation control of multiple quadcopters with obstacle avoidance and connectivity maintenance. Control Eng Pract. 2022;121:105054.
  • 5. Cai Z, Zhou H, Zhao J, Wu K, Wang Y. Formation control of multiple unmanned aerial vehicles by event-triggered distributed model predictive control. IEEE Access. 2018;6:55614–27.
  • 6. Zhao W, Go TH. Quadcopter formation flight control combining mpc and robust feedback linearization. J Franklin Inst. 2014;351(3):1335–55.
  • 7. Xiao H, Li Z, Chen CP. Formation control of leader–follower mobile robots’ systems using model predictive control based on neural-dynamic optimization. IEEE Trans Ind Electron. 2016;63(9):5752–62.
  • 8. Kuriki Y, Namerikawa T. Formation control with collision avoidance for a multi-uav system using decentralized mpc and consensus-based control. SICE J Control Meas Syst Integr. 2015;8(4):285–94.
  • 9. Ille M, Namerikawa T. Collision avoidance between multi-uav-systems considering formation control using mpc. In: 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM); 2017 Jul 3-7; Munich, Germany. New York (US): IEEE; 2017. p.651–6.
  • 10. Droge G. Distributed virtual leader moving formation control using behavior-based mpc. In: 2015 American Control Conference (ACC); 2015 Jul 1-3; Chicago, US. New York (US): IEEE; 2015. p. 2323–8.
  • 11. Zhang K, Sun Q, Shi Y. Trajectory tracking control of autonomous ground vehicles using adaptive learning mpc. IEEE Trans Neural Netw Learn Syst. 2021;32(12):5554–64.
  • 12. Oyelere SS. The application of model predictive control (mpc) to fast systems such as autonomous ground vehicles (agv). IOSR J Comput Eng. 2014;3(3):27–37.
  • 13. Liu J, Jayakumar P, Stein JL, Ersal T. A nonlinear model predictive control formulation for obstacle avoidance in high-speed autonomous ground vehicles in unstructured environments. Veh Syst Dyn. 2018;56(6):853–82.
  • 14. Fukushima H, Kon K, Matsuno F. Model predictive formation control using branch-and-bound compatible with collision avoidance problems. IEEE Trans Robot. 2013;29(5):1308–17.
  • 15. Zang Z, Gong J, Li Z, Song J, Liu H, Gong C, et al. Formation trajectory tracking control of utvs: A coupling multi-objective iterative distributed model predictive control approach. IEEE Trans Intell Veh. 2022;8(3):2222–32.
  • 16. Dong Z, Zhang Z, Qi S, Zhang H, Li J, Liu Y. Autonomous cooperative formation control of underactuated usvs based on improved mpc in complex ocean environment. Ocean Eng. 2023;270:113633.
  • 17. Eskandarpour A, Majd VJ. Cooperative formation control of quadrotors with obstacle avoidance and self collisions based on a hierarchical mpc approach. In: 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM); 2014 Oct 15-17; Tehran, Iran. New York (US): IEEE; 2014. p. 351–6.
  • 18. Huang J, Ji Z, Xiao S, Jia C, Jia Y, Wang X. Multi-agent vehicle formation control based on mpc and particle swarm optimization algorithm. In: 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC); 2022 Mar 25-27; Chongqing, China. New York (US): IEEE; 2022. p. 288–92.
  • 19. Li S, Song Q. Cooperative control of multiple agvs based on multi-agent reinforcement learning. In: 2023 IEEE International Conference on Unmanned Systems (ICUS); 2023 Mar 27-29; Beijing, China. New York (US): IEEE; 2023. p. 512–7.
  • 20. Van Parys R, Pipeleers G. Distributed mpc for multi-vehicle systems moving in formation. Robot Auton Syst. 2017;97:144–52.
  • 21. Yu S, Hirche M, Huang Y, Chen H, Allgöwer F. Model predictive control for autonomous ground vehicles: A review. Autom Intell Syst. 2021;1:1–17.
  • 22. Shen W, Wu D. Path planning of an agv based on artificial potential field and model predictive control. In: 2021 33rd Chinese Control and Decision Conference (CCDC); 2021 May 28-30; Kunming, China. New York (US): IEEE; 2021. p. 6925–30.
  • 23. Zhang J, Yan J, Zhang P. Multi-uav formation control based on a novel back-stepping approach. IEEE Trans Veh Technol. 2020;69(3):2437–48.
  • 24. Wang Y, Yang Y, Pu Y, Manzie C. Path following by formations of agents with collision avoidance guarantees using distributed model predictive control. In: 2021 American Control Conference (ACC); 2021 May 26-28; New Orleans, US. New York (US): IEEE; 2021. p. 3352–7.
  • 25. Qian X, De La Fortelle A, Moutarde F. A hierarchical model predictive control framework for on-road formation control of autonomous vehicles. In: 2016 IEEE Intelligent Vehicles Symposium (IV); 2016 Jun 19-22; Gothenburg, Sweden. New York (US): IEEE; 2016. p. 376–81.
  • 26. Alonso-Mora J, Baker S, Rus D. Multi-robot formation control and object transport in dynamic environments via constrained optimization. Int J Robot Res. 2017;36(9):1000–21.
  • 27. Wei H, Shi Y. MPC-based motion planning and control enables smarter and safer autonomous marine vehicles: Perspectives and a tutorial survey. IEEE/CAA J Autom Sin. 2022;10(1):8–24.
There are 27 citations in total.

Details

Primary Language English
Subjects Autonomous Vehicle Systems, Dynamics, Vibration and Vibration Control, Automotive Mechatronics and Autonomous Systems
Journal Section Research Article
Authors

Can Ulaş Doğruer 0000-0001-8916-931X

Submission Date March 29, 2025
Acceptance Date May 26, 2025
Publication Date June 30, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

Vancouver Doğruer CU. Nonlinear MPC-Based Formation Control for Autonomous Ground Vehicles with Dynamic Geometric Patterns. Hittite J Sci Eng. 2025;12(2):101-10.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).