Polyethylenimine-Assisted Aggregation of β-Galactosidase from Kluyveromyces lactis
Year 2024,
Volume: 11 Issue: 4, 149 - 156, 31.12.2024
Nedim Albayrak
,
Rabia Akyol Kütük
Abstract
Using PEI as an aggregating agent with β-galactosidase from Kluyveromyces lactis was investigated with no solid support. PEI, a cationic polymer initiated instant aggregation with the enzyme in solution. The factors affecting the aggregation such as PEI to enzyme ratio, glutar aldehyde for cross-linking and pH were investigated. Aggregation and sedimentation as well as the residual activity of aggregates were effectively dependent on the PEI to enzyme ratios. Easily precipitating aggregates at the ratio of 1/8, PEI enzyme aggregates were able to contain all enzyme in the complexation and displayed 60% of initial lactase activity. The PEI aggregation of enzyme led to enhancements in chemical and physical characteristics compered to free enzyme. The soluble enzyme showed a narrow optimum at about pH 7 while pH optimum of the aggregates extended one pH unit toward the alkaline range. Upon overnight incubation at 40 ºC, aggregated enzyme displayed 30% greater stability on average at all pHs tested. Although the free enzyme showed the highest activity at 40°C, it rapidly lost 50% of its activity at 50°C. In contrast, the aggregated enzyme retained full activity at 50°C and 70% activity at 65°C. With markedly enhanced thermal stability, the half-life of the aggregated enzyme increased from 76 hours to 254 hours at 40ºC. Overall, the simple and rapid aggregation of PEI with the enzyme led to instant and intense clustering, resulting in higher thermal and pH stabilities. This method may potentially offer efficient and cost-effective catalysis in lactase conversion processes.
Ethical Statement
Not applicable.
Supporting Institution
The Department of Food Engineering, Faculty of Engineering at Hitit University
Project Number
The research was supported with the grant from Scientific Research Projects Unit (BAP) of Hitit University, Project Code No: MUH19004.16.003.
Thanks
We would like to thank Pithana Research and Development Center (PARGEM) at Çorum Teknokent and Par-Gem for their support in obtaining the Lactozym Pure enzyme sample from Novozyme.
References
- Eldin MS, Mita DG. Immobilized Enzymes: Strategies for Overcoming the Substrate Diffusion- Limitation Problem. Curr Biotechnol. 2014;3(3):207–17.
- Schoffelen S, van Hest JCM. Chemical approaches for the construction of multi-enzyme reaction systems. Curr Opin Struct Biol. 2013 Aug;23(4):613–21.
- Numanoğlu Y, Sungur S. β-Galactosidase from Kluyveromyces lactis cell disruption and enzyme immobilization using a cellulose–gelatin carrier system. Process Biochem. 2004 Feb [cited 2011 Nov 26];39(6):705–11.
- Remaut K, Lucas B, Raemdonck K, Braeckmans K, Demeester J, De Smedt SC. Protection of oligonucleotides against enzymatic degradation by pegylated and nonpegylated branched polyethyleneimine. Biomacromolecules. 2007 Apr;8(4):1333–40.
- Velasco-Lozano S, López-Gallego F, Rocha-Martin J, Guisán JM, Favela-Torres E. Improving enantioselectivity of lipase from Candida rugosa by carrier-bound and carrier-free immobilization. J Mol Catal B Enzym. 2016;130:32–9.
- Parthasarathy R V, Martin CR. Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization. Nature. 1994 May 26;369(6478):298–301.
- Roessl U, Nahálka J, Nidetzky B. Carrier-free immobilized enzymes for biocatalysis. Biotechnol Lett. 2010 Mar [cited 2011 Aug 30];32(3):341–50.
- Hustad GO, Richardson T, Olson NF. Immobilization of B-Galactosidase on an Insoluble Carrier with a Polyisocyanate Polymer . I . Preparation and Properties. J Dairy Sci. 1973;56(9):1111–7.
- Grajales-Hernández DA, Velasco-Lozano S, Armendáriz-Ruiz MA, Rodríguez-González JA, Camacho-Ruíz RM, Asaff-Torres A, et al. Carrier-bound and carrier-free immobilization of type A feruloyl esterase from Aspergillus niger: Searching for an operationally stable heterogeneous biocatalyst for the synthesis of butyl hydroxycinnamates. J Biotechnol. 2020;316(March):6–16.
- Dal Magro L, Hertz PF, Fernandez-Lafuente R, Klein MP, Rodrigues RC. Preparation and characterization of a Combi-CLEAs from pectinases and cellulases: A potential biocatalyst for grape juice clarification. RSC Adv. 2016;6(32):27242–51.
- Wilson L, Illanes AA, Romero O, Vergara JJ, Mateo CC. Carrier-bound and carrier-free penicillin acylase biocatalysts for the thermodynamically controlled synthesis of [beta]-lactam compounds in organic medium. Enzyme Microb Technol. 2008 Nov 6 [cited 2011 Nov 26];43(6):442–7.
- Suh J, Lee SH, Kim SM, Hah SS. Conformational Flexibility of Poly(ethylenimine) and Its Derivatives. Bioorg Chem. 1997 Aug;25(4):221–31.
- Cui C, Tao Y, Li L, Chen B, Tan T. Improving the activity and stability of Yarrowia lipolytica lipase Lip2 by immobilization on polyethyleneimine-coated polyurethane foam. J Mol Catal B Enzym. 2013;91:59–66.
- Santos JP, Welsh ER, Gaber BP, Singh A. Polyelectrolyte-assisted immobilization of active enzymes on glass beads. Langmuir. 2001;17(17):5361–7.
- Bucatariu F, Ghiorghita C-A, Simon F, Bellmann C, Dragan ES. Poly(ethyleneimine) cross-linked multilayers deposited onto solid surfaces and enzyme immobilization as a function of the film properties. Appl Surf Sci. 2013 Sep 1;280(0):812–9.
- Margolin A, Izumrudov V, Švedas VK, Zezin A, Kabanov V, Berezin
Preparation and properties of penicillin amidase immobilized in polyelectrolyte complexes. Biochim Biophys Acta - Enzymol. 1981 Aug;660(2):359–65.
- Sethuraman V a, Na K, Bae YH. pH-responsive sulfonamide/PEI system for tumor specific gene delivery: an in vitro study. Biomacromolecules. 2006 Jan;7(1):64–70.
- Deng R, Yue Y, Jin F, Chen Y, Kung H-F, Lin MCM, et al. Revisit the complexation of PEI and DNA - how to make low cytotoxic and highly efficient PEI gene transfection non-viral vectors with a controllable chain length and structure? J Control release. 2009 Nov 16 [cited 2011 Jul 12];140(1):40–6.
- Bruil a, Oosterom H a, Steneker I, Al BJ, Beugeling T, van Aken WG, et al. Poly(ethyleneimine) modified filters for the removal of leukocytes from blood. J Biomed Mater Res. 1993 Oct;27(10):1253–68.
- de Albuquerque TL, de Sousa M, Gomes e Silva NC, Girão Neto CAC, Gonçalves LRB, Fernandez-Lafuente R, et al. β-Galactosidase from Kluyveromyces lactis: Characterization, production, immobilization and applications - A review. Int J Biol Macromol. 2021;191(September):881–98.
- Tello-Solís SR, Jiménez-Guzmân J, Sarabia-Leos C, Gómez-Ruíz L, Cruz-Guerrero AE, Rodríguez-Serrano GM, et al. Determination of the secondary structure of Kluyveromyces lactis β-galactosidase by circular dichroism and its structure-activity relationship as a function of the pH. J Agric Food Chem. 2005;53(26):10200–4.
- Argenta AB, Nogueira A, de P. Scheer A. Hydrolysis of whey lactose: Kluyveromyces lactis β-galactosidase immobilisation and integrated process hydrolysis-ultrafiltration. Int Dairy J. 2021;117:105007.
- Dickson RC, Dickson LR, Markin JS. Purification and properties of an inducible β-galactosidase isolated from the yeast Kluyveromyces lactis. J Bacteriol. 1979;137(1):51–61.
- Martínez-Villaluenga C, Cardelle-Cobas A, Corzo N, Olano A, Villamiel M. Optimization of conditions for galactooligosaccharide synthesis during lactose hydrolysis by β-galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP G). Food Chem. 2008 Mar [cited 2011 Aug 14];107(1):258–64.
- Yin H, Bultema JB, Dijkhuizen L, van Leeuwen SS. Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae. Food Chem. 2017;225:230–8.
- Pessela BCC, Fernández-lafuente R, Fuentes M, Vián A, Garc JL, Carrascosa A V, et al. Reversible immobilization of a thermophilic
galactosidase via ionic adsorption on PEI-coated Sepabeads. Enzyme Microb Technol. 2003;32:369–74.
- Cavaille D, Combes D. Characterization of β-galactosidase from Kluyveromyces lactis. Biotechnol Appl Biochem. 1995;22(1):55–64.
- Patel AK, Singhania RR, Pandey A. ‘Novel enzymatic processes applied to the food industry.’ Curr Opin Food Sci. 2016;7:64-72.
- Güleç HA. Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: effect of surface characteristics. Colloids Surf B Biointerfaces. 2013 Apr 1 [cited 2013 Aug 15];104:83–90.
- Albayrak N, Yang ST. Immobilization of β-galactosidase on fibrous matrix by polyethyleneimine for production of galacto-oligosaccharides from lactose. Biotechnol Prog. 2002 [cited 2011 Dec 3];18(2):240–251.
- de Lathouder KM, van Benthem DTJ, Wallin SA, Mateo C, Lafuente RF, Guisan JM, et al. Polyethyleneimine (PEI) functionalized ceramic monoliths as enzyme carriers: Preparation and performance. J Mol Catal B Enzym. 2008 Jan 2;50(1):20–7.
- Albayrak N, Kanisli ME. Preparation and Characterization of Cross-Linked PEI-Lipase Aggregates with Improved Activity and Stability. JOTCSB. 2022;5(2):127–44.
- Bayindirli A. Immobilization of enzymes and potential applications in food industry. Vol. 20, Gıda. 1995; 20;2:113-116.
- Maghraby YR, El-Shabasy RM, Ibrahim AH, Azzazy HMES. Enzyme Immobilization Technologies and Industrial Applications. ACS Omega. 2023;8(6):5184–96.
- Becerra M, Prado SD, Siso MIG, Cerdán ME. New secretory strategies for Kluyveromyces lactis β-galactosidase. Protein Eng. 2001;14(5):379–86.
- Perczel AÁS, HollÓsi M, TusnÁdy GáÁB, Fasman GD. Convex constraint analysis: A natural deconvolution of circular dichroism curves of proteins. Protein Eng Des Sel. 1991;4(6):669–79.
- Rodríguez ÁP, Leiro RF, Cristina MC, Cerdán ME, González Siso MI, Becerra M. Secretion and properties of a hybrid Kluyveromyces lactis-Aspergillus niger β-galactosidase. Microb Cell Fact. 2006;5:1–13.
- Bayramoglu G, Kaya B, Yakup Arıca M. Immobilization of Candida rugosa lipase onto spacer-arm attached poly(GMA-HEMA-EGDMA) microspheres. Food Chem. 2005 Sep;92(2):261–8.
- Pessela BCC, Betancor L, Lopez-Gallego F, Torres R, Dellamora-Ortiz GM, Alonso-Morales N, et al. Increasing the binding strength of proteins to PEI coated supports by immobilizing at high ionic strength. Enzyme Microb Technol. 2005 Aug [cited 2014 Dec 24];37(3):295–9.
- Zhu J, Tang A, Law LP, Feng M, Ho KM, Lee DKL, et al. Amphiphilic core-shell nanoparticles with poly(ethylenimine) shells as potential gene delivery carriers. Bioconjug Chem. 2005;16(1):139–46.
- Ghriga MA, Grassl B, Gareche M, Khodja M, Lebouachera SEI, Andreu N, et al. Review of recent advances in polyethylenimine crosslinked polymer gels used for conformance control applications. Polym Bull. 2019;76(11):6001–29.
- Ortega N, Sáez L, Palacios D, Busto MD. Kinetic Modeling, Thermodynamic Approach and Molecular Dynamics Simulation of Thermal Inactivation of Lipases from Burkholderia cepacia and Rhizomucor miehei. Int J Mol Sci. 2022;23(12).
- Bahar T, Çelebi S. Characterization of glucoamylase immobilized on magnetic poly(styrene) particles. Enzyme Microb Technol. 1998 Oct;23(5):301–4.
Year 2024,
Volume: 11 Issue: 4, 149 - 156, 31.12.2024
Nedim Albayrak
,
Rabia Akyol Kütük
Project Number
The research was supported with the grant from Scientific Research Projects Unit (BAP) of Hitit University, Project Code No: MUH19004.16.003.
References
- Eldin MS, Mita DG. Immobilized Enzymes: Strategies for Overcoming the Substrate Diffusion- Limitation Problem. Curr Biotechnol. 2014;3(3):207–17.
- Schoffelen S, van Hest JCM. Chemical approaches for the construction of multi-enzyme reaction systems. Curr Opin Struct Biol. 2013 Aug;23(4):613–21.
- Numanoğlu Y, Sungur S. β-Galactosidase from Kluyveromyces lactis cell disruption and enzyme immobilization using a cellulose–gelatin carrier system. Process Biochem. 2004 Feb [cited 2011 Nov 26];39(6):705–11.
- Remaut K, Lucas B, Raemdonck K, Braeckmans K, Demeester J, De Smedt SC. Protection of oligonucleotides against enzymatic degradation by pegylated and nonpegylated branched polyethyleneimine. Biomacromolecules. 2007 Apr;8(4):1333–40.
- Velasco-Lozano S, López-Gallego F, Rocha-Martin J, Guisán JM, Favela-Torres E. Improving enantioselectivity of lipase from Candida rugosa by carrier-bound and carrier-free immobilization. J Mol Catal B Enzym. 2016;130:32–9.
- Parthasarathy R V, Martin CR. Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization. Nature. 1994 May 26;369(6478):298–301.
- Roessl U, Nahálka J, Nidetzky B. Carrier-free immobilized enzymes for biocatalysis. Biotechnol Lett. 2010 Mar [cited 2011 Aug 30];32(3):341–50.
- Hustad GO, Richardson T, Olson NF. Immobilization of B-Galactosidase on an Insoluble Carrier with a Polyisocyanate Polymer . I . Preparation and Properties. J Dairy Sci. 1973;56(9):1111–7.
- Grajales-Hernández DA, Velasco-Lozano S, Armendáriz-Ruiz MA, Rodríguez-González JA, Camacho-Ruíz RM, Asaff-Torres A, et al. Carrier-bound and carrier-free immobilization of type A feruloyl esterase from Aspergillus niger: Searching for an operationally stable heterogeneous biocatalyst for the synthesis of butyl hydroxycinnamates. J Biotechnol. 2020;316(March):6–16.
- Dal Magro L, Hertz PF, Fernandez-Lafuente R, Klein MP, Rodrigues RC. Preparation and characterization of a Combi-CLEAs from pectinases and cellulases: A potential biocatalyst for grape juice clarification. RSC Adv. 2016;6(32):27242–51.
- Wilson L, Illanes AA, Romero O, Vergara JJ, Mateo CC. Carrier-bound and carrier-free penicillin acylase biocatalysts for the thermodynamically controlled synthesis of [beta]-lactam compounds in organic medium. Enzyme Microb Technol. 2008 Nov 6 [cited 2011 Nov 26];43(6):442–7.
- Suh J, Lee SH, Kim SM, Hah SS. Conformational Flexibility of Poly(ethylenimine) and Its Derivatives. Bioorg Chem. 1997 Aug;25(4):221–31.
- Cui C, Tao Y, Li L, Chen B, Tan T. Improving the activity and stability of Yarrowia lipolytica lipase Lip2 by immobilization on polyethyleneimine-coated polyurethane foam. J Mol Catal B Enzym. 2013;91:59–66.
- Santos JP, Welsh ER, Gaber BP, Singh A. Polyelectrolyte-assisted immobilization of active enzymes on glass beads. Langmuir. 2001;17(17):5361–7.
- Bucatariu F, Ghiorghita C-A, Simon F, Bellmann C, Dragan ES. Poly(ethyleneimine) cross-linked multilayers deposited onto solid surfaces and enzyme immobilization as a function of the film properties. Appl Surf Sci. 2013 Sep 1;280(0):812–9.
- Margolin A, Izumrudov V, Švedas VK, Zezin A, Kabanov V, Berezin
Preparation and properties of penicillin amidase immobilized in polyelectrolyte complexes. Biochim Biophys Acta - Enzymol. 1981 Aug;660(2):359–65.
- Sethuraman V a, Na K, Bae YH. pH-responsive sulfonamide/PEI system for tumor specific gene delivery: an in vitro study. Biomacromolecules. 2006 Jan;7(1):64–70.
- Deng R, Yue Y, Jin F, Chen Y, Kung H-F, Lin MCM, et al. Revisit the complexation of PEI and DNA - how to make low cytotoxic and highly efficient PEI gene transfection non-viral vectors with a controllable chain length and structure? J Control release. 2009 Nov 16 [cited 2011 Jul 12];140(1):40–6.
- Bruil a, Oosterom H a, Steneker I, Al BJ, Beugeling T, van Aken WG, et al. Poly(ethyleneimine) modified filters for the removal of leukocytes from blood. J Biomed Mater Res. 1993 Oct;27(10):1253–68.
- de Albuquerque TL, de Sousa M, Gomes e Silva NC, Girão Neto CAC, Gonçalves LRB, Fernandez-Lafuente R, et al. β-Galactosidase from Kluyveromyces lactis: Characterization, production, immobilization and applications - A review. Int J Biol Macromol. 2021;191(September):881–98.
- Tello-Solís SR, Jiménez-Guzmân J, Sarabia-Leos C, Gómez-Ruíz L, Cruz-Guerrero AE, Rodríguez-Serrano GM, et al. Determination of the secondary structure of Kluyveromyces lactis β-galactosidase by circular dichroism and its structure-activity relationship as a function of the pH. J Agric Food Chem. 2005;53(26):10200–4.
- Argenta AB, Nogueira A, de P. Scheer A. Hydrolysis of whey lactose: Kluyveromyces lactis β-galactosidase immobilisation and integrated process hydrolysis-ultrafiltration. Int Dairy J. 2021;117:105007.
- Dickson RC, Dickson LR, Markin JS. Purification and properties of an inducible β-galactosidase isolated from the yeast Kluyveromyces lactis. J Bacteriol. 1979;137(1):51–61.
- Martínez-Villaluenga C, Cardelle-Cobas A, Corzo N, Olano A, Villamiel M. Optimization of conditions for galactooligosaccharide synthesis during lactose hydrolysis by β-galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP G). Food Chem. 2008 Mar [cited 2011 Aug 14];107(1):258–64.
- Yin H, Bultema JB, Dijkhuizen L, van Leeuwen SS. Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae. Food Chem. 2017;225:230–8.
- Pessela BCC, Fernández-lafuente R, Fuentes M, Vián A, Garc JL, Carrascosa A V, et al. Reversible immobilization of a thermophilic
galactosidase via ionic adsorption on PEI-coated Sepabeads. Enzyme Microb Technol. 2003;32:369–74.
- Cavaille D, Combes D. Characterization of β-galactosidase from Kluyveromyces lactis. Biotechnol Appl Biochem. 1995;22(1):55–64.
- Patel AK, Singhania RR, Pandey A. ‘Novel enzymatic processes applied to the food industry.’ Curr Opin Food Sci. 2016;7:64-72.
- Güleç HA. Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: effect of surface characteristics. Colloids Surf B Biointerfaces. 2013 Apr 1 [cited 2013 Aug 15];104:83–90.
- Albayrak N, Yang ST. Immobilization of β-galactosidase on fibrous matrix by polyethyleneimine for production of galacto-oligosaccharides from lactose. Biotechnol Prog. 2002 [cited 2011 Dec 3];18(2):240–251.
- de Lathouder KM, van Benthem DTJ, Wallin SA, Mateo C, Lafuente RF, Guisan JM, et al. Polyethyleneimine (PEI) functionalized ceramic monoliths as enzyme carriers: Preparation and performance. J Mol Catal B Enzym. 2008 Jan 2;50(1):20–7.
- Albayrak N, Kanisli ME. Preparation and Characterization of Cross-Linked PEI-Lipase Aggregates with Improved Activity and Stability. JOTCSB. 2022;5(2):127–44.
- Bayindirli A. Immobilization of enzymes and potential applications in food industry. Vol. 20, Gıda. 1995; 20;2:113-116.
- Maghraby YR, El-Shabasy RM, Ibrahim AH, Azzazy HMES. Enzyme Immobilization Technologies and Industrial Applications. ACS Omega. 2023;8(6):5184–96.
- Becerra M, Prado SD, Siso MIG, Cerdán ME. New secretory strategies for Kluyveromyces lactis β-galactosidase. Protein Eng. 2001;14(5):379–86.
- Perczel AÁS, HollÓsi M, TusnÁdy GáÁB, Fasman GD. Convex constraint analysis: A natural deconvolution of circular dichroism curves of proteins. Protein Eng Des Sel. 1991;4(6):669–79.
- Rodríguez ÁP, Leiro RF, Cristina MC, Cerdán ME, González Siso MI, Becerra M. Secretion and properties of a hybrid Kluyveromyces lactis-Aspergillus niger β-galactosidase. Microb Cell Fact. 2006;5:1–13.
- Bayramoglu G, Kaya B, Yakup Arıca M. Immobilization of Candida rugosa lipase onto spacer-arm attached poly(GMA-HEMA-EGDMA) microspheres. Food Chem. 2005 Sep;92(2):261–8.
- Pessela BCC, Betancor L, Lopez-Gallego F, Torres R, Dellamora-Ortiz GM, Alonso-Morales N, et al. Increasing the binding strength of proteins to PEI coated supports by immobilizing at high ionic strength. Enzyme Microb Technol. 2005 Aug [cited 2014 Dec 24];37(3):295–9.
- Zhu J, Tang A, Law LP, Feng M, Ho KM, Lee DKL, et al. Amphiphilic core-shell nanoparticles with poly(ethylenimine) shells as potential gene delivery carriers. Bioconjug Chem. 2005;16(1):139–46.
- Ghriga MA, Grassl B, Gareche M, Khodja M, Lebouachera SEI, Andreu N, et al. Review of recent advances in polyethylenimine crosslinked polymer gels used for conformance control applications. Polym Bull. 2019;76(11):6001–29.
- Ortega N, Sáez L, Palacios D, Busto MD. Kinetic Modeling, Thermodynamic Approach and Molecular Dynamics Simulation of Thermal Inactivation of Lipases from Burkholderia cepacia and Rhizomucor miehei. Int J Mol Sci. 2022;23(12).
- Bahar T, Çelebi S. Characterization of glucoamylase immobilized on magnetic poly(styrene) particles. Enzyme Microb Technol. 1998 Oct;23(5):301–4.