Research Article
BibTex RIS Cite

Year 2023, Volume: 52 Issue: 2, 398 - 409, 31.03.2023
https://doi.org/10.15672/hujms.1121712

Abstract

References

  • [1] A. Ayache and O. Echi, The envelope of a subcategory in Topology and group theory, Int. J. Math. Math. Sci. 21, 3787–3404, 2005.
  • [2] K. Belaid, H-spectral spaces, Topol. Appl. 153, 3019–3023, 2006.
  • [3] K. Belaid, O. Echi, and R. Gargouri, A-spectral spaces, Topol. Appl., 138, 315–322, 2004.
  • [4] K. Belaid, O. Echi, and S. Lazaar, $T_{(\alpha , \beta )}$-spaces and the Wallman compactification, Int. J. Math. Math. Sci. 68, 3717–3735, 2004.
  • [5] E. Bouacida, O. Echi, and E. Salhi, Foliations, spectral topology and special morphisms, Lect. Notes in Pure and Appl. Math. 205, 111–132, 1999.
  • [6] E. Bouacida, O. Echi, and E. Salhi, Feuilletages et topologie spectrale, J. Math. Soc. Jpn. 52 (2), 447–464, 2000.
  • [7] O. Bratteli and G.A. Elliott. Structure spaces of approximately finite-dimensional $C^{\star}$-algebras II, J. Funct. Anal. 30 (1), 74–82, 1978.
  • [8] C. Casacuberta, A. Frei, and G. C. Tan, Extending localization functors, J. Pure Appl. Algebra 103, 149–165, 1995.
  • [9] A. Deleanu, A. Frei, and P. Hilton, Generalized Adams completion, Cah. Topologie Géom. Différ. Catég. 15, 61–82, 1974.
  • [10] D. Dikranjan and W. Tholen, Categorical Structure of Closure Operators, Kluwer Academic Publishers, 1995.
  • [11] R. El Bashir and J. Velebil, Simultaneously reflective and coreflective subcategories of presheaves, Theory Appl. Categ. 10, 410–423, 2002.
  • [12] A. Frei, On completion and shape, Bol. Soc. Brasil. Mat., 5, 147–159, 1974.
  • [13] P. J. Freyd and G. M. Kelly, Categories of continuous functors (I), J. Pure Appl. Algebra 2, 169–191, 1972.
  • [14] A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique, Die Grundlehren der Mathematischen Wissenschaften 166, Springer-Verlag, New York, 1971.
  • [15] J. Hartmanis, On the lattice of topologies, Canad. J. Math. 10, 547–553, 1958.
  • [16] J. M. Harvey, Reflective subcategories Ill, J. Math. 29, 365–369, 1985.
  • [17] H. Herrlich and G. Strecker, H-closed spaces and reflective subcategories, Math. Ann. 177, 302–309, 1968.
  • [18] M. Hochster, Prime ideal structure in commutative rings, Trans. Am. Math. Soc. 142, 43–60, 1969.
  • [19] M. Lamper, Complements in the lattice of all topologies of topological groups, Arch Math. (Brno) 10 (4), 221–230, 1974.
  • [20] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Math. 5, Springer-Verlag, New York, 1971.
  • [21] W. Tholen, Reflective subcategories, Topol. Appl. 27, 201–212, 1987.
  • [22] W.J. Thron, Lattice-equivalence of topological spaces, Duke. Math. J. 29, 671–679, 1962.

On $T_1$-reflection of topological spaces

Year 2023, Volume: 52 Issue: 2, 398 - 409, 31.03.2023
https://doi.org/10.15672/hujms.1121712

Abstract

This paper deals with some universal spaces. For every topological space $X$, the universal $T_1$ space is viewed as the bottom element of the lattice $\mathcal{L}_X$. The class of morphisms in $\mathrm{\mathbf{Top}}$ orthogonal to all $T_1$ spaces is characterized. Also, we introduce some new separation axioms and characterize them. Moreover, we characterize topological spaces $X$ for which the universal $T_1$ space associated with $X$ is a spectral space. Finally, we give some characterizations of topological spaces such that their $T_1$-reflection are compact spaces.

References

  • [1] A. Ayache and O. Echi, The envelope of a subcategory in Topology and group theory, Int. J. Math. Math. Sci. 21, 3787–3404, 2005.
  • [2] K. Belaid, H-spectral spaces, Topol. Appl. 153, 3019–3023, 2006.
  • [3] K. Belaid, O. Echi, and R. Gargouri, A-spectral spaces, Topol. Appl., 138, 315–322, 2004.
  • [4] K. Belaid, O. Echi, and S. Lazaar, $T_{(\alpha , \beta )}$-spaces and the Wallman compactification, Int. J. Math. Math. Sci. 68, 3717–3735, 2004.
  • [5] E. Bouacida, O. Echi, and E. Salhi, Foliations, spectral topology and special morphisms, Lect. Notes in Pure and Appl. Math. 205, 111–132, 1999.
  • [6] E. Bouacida, O. Echi, and E. Salhi, Feuilletages et topologie spectrale, J. Math. Soc. Jpn. 52 (2), 447–464, 2000.
  • [7] O. Bratteli and G.A. Elliott. Structure spaces of approximately finite-dimensional $C^{\star}$-algebras II, J. Funct. Anal. 30 (1), 74–82, 1978.
  • [8] C. Casacuberta, A. Frei, and G. C. Tan, Extending localization functors, J. Pure Appl. Algebra 103, 149–165, 1995.
  • [9] A. Deleanu, A. Frei, and P. Hilton, Generalized Adams completion, Cah. Topologie Géom. Différ. Catég. 15, 61–82, 1974.
  • [10] D. Dikranjan and W. Tholen, Categorical Structure of Closure Operators, Kluwer Academic Publishers, 1995.
  • [11] R. El Bashir and J. Velebil, Simultaneously reflective and coreflective subcategories of presheaves, Theory Appl. Categ. 10, 410–423, 2002.
  • [12] A. Frei, On completion and shape, Bol. Soc. Brasil. Mat., 5, 147–159, 1974.
  • [13] P. J. Freyd and G. M. Kelly, Categories of continuous functors (I), J. Pure Appl. Algebra 2, 169–191, 1972.
  • [14] A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique, Die Grundlehren der Mathematischen Wissenschaften 166, Springer-Verlag, New York, 1971.
  • [15] J. Hartmanis, On the lattice of topologies, Canad. J. Math. 10, 547–553, 1958.
  • [16] J. M. Harvey, Reflective subcategories Ill, J. Math. 29, 365–369, 1985.
  • [17] H. Herrlich and G. Strecker, H-closed spaces and reflective subcategories, Math. Ann. 177, 302–309, 1968.
  • [18] M. Hochster, Prime ideal structure in commutative rings, Trans. Am. Math. Soc. 142, 43–60, 1969.
  • [19] M. Lamper, Complements in the lattice of all topologies of topological groups, Arch Math. (Brno) 10 (4), 221–230, 1974.
  • [20] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Math. 5, Springer-Verlag, New York, 1971.
  • [21] W. Tholen, Reflective subcategories, Topol. Appl. 27, 201–212, 1987.
  • [22] W.J. Thron, Lattice-equivalence of topological spaces, Duke. Math. J. 29, 671–679, 1962.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Sami Lazaar 0000-0002-3190-4251

Abdelwaheb Mhemdi 0000-0002-9870-7148

Tareq Al-shami 0000-0002-8074-1102

Hadjer Okbani 0000-0003-1889-3583

Publication Date March 31, 2023
Published in Issue Year 2023 Volume: 52 Issue: 2

Cite

APA Lazaar, S., Mhemdi, A., Al-shami, T., Okbani, H. (2023). On $T_1$-reflection of topological spaces. Hacettepe Journal of Mathematics and Statistics, 52(2), 398-409. https://doi.org/10.15672/hujms.1121712
AMA Lazaar S, Mhemdi A, Al-shami T, Okbani H. On $T_1$-reflection of topological spaces. Hacettepe Journal of Mathematics and Statistics. March 2023;52(2):398-409. doi:10.15672/hujms.1121712
Chicago Lazaar, Sami, Abdelwaheb Mhemdi, Tareq Al-shami, and Hadjer Okbani. “On $T_1$-Reflection of Topological Spaces”. Hacettepe Journal of Mathematics and Statistics 52, no. 2 (March 2023): 398-409. https://doi.org/10.15672/hujms.1121712.
EndNote Lazaar S, Mhemdi A, Al-shami T, Okbani H (March 1, 2023) On $T_1$-reflection of topological spaces. Hacettepe Journal of Mathematics and Statistics 52 2 398–409.
IEEE S. Lazaar, A. Mhemdi, T. Al-shami, and H. Okbani, “On $T_1$-reflection of topological spaces”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 2, pp. 398–409, 2023, doi: 10.15672/hujms.1121712.
ISNAD Lazaar, Sami et al. “On $T_1$-Reflection of Topological Spaces”. Hacettepe Journal of Mathematics and Statistics 52/2 (March2023), 398-409. https://doi.org/10.15672/hujms.1121712.
JAMA Lazaar S, Mhemdi A, Al-shami T, Okbani H. On $T_1$-reflection of topological spaces. Hacettepe Journal of Mathematics and Statistics. 2023;52:398–409.
MLA Lazaar, Sami et al. “On $T_1$-Reflection of Topological Spaces”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 2, 2023, pp. 398-09, doi:10.15672/hujms.1121712.
Vancouver Lazaar S, Mhemdi A, Al-shami T, Okbani H. On $T_1$-reflection of topological spaces. Hacettepe Journal of Mathematics and Statistics. 2023;52(2):398-409.