Research Article
BibTex RIS Cite
Year 2023, , 572 - 584, 30.05.2023
https://doi.org/10.15672/hujms.1132283

Abstract

Project Number

3/57099

References

  • [1] I. Basabe, J. González, Y. Rudyak, and D. Tamaki, Higher topological complexity and its symmetrization, Algebraic Geom. Topol. 14 (4), 2103-2124, 2014.
  • [2] Z. Baszczyk and M. Kaluba, Effective topological complexity of spaces with symmetries, Publ. Mat. 62, 55-74, 2018.
  • [3] A. Borat and T. Vergili, Higher homotopic distance, Topol. Methods Nonlinear Anal. 57 (2), 525-534, 2021.
  • [4] Z. Doulgeri and L. Droukas, Robot task space pid type regulation with prescribed performance guaranties, In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1644–1649, 2010.
  • [5] M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2), 211-221, 2003.
  • [6] M. Is and I. Karaca, Higher topological complexity for fibrations, arXiv preprint arXiv:2107.04465, 2021.
  • [7] E. Mac’ias-Virg’os and D. Mosquera-Lois, Homotopic distance between maps, Mathematical Proceedings of the Cambridge Philosophical Society, 172, 73-93, 2021.
  • [8] A. Murillo and J. Wu, Topological complexity of the work map, J. Topol. Anal. 13 (1), 219-238, 2021.
  • [9] P. Pavešić, Complexity of the forward kinematic map, Mech. Mach. Theory 117, 230- 243, 2017.
  • [10] P. Pavešić, A topologists view of kinematic maps and manipulation complexity, Contemp. Math. 702, 61-83, 2018.
  • [11] Petar Pavešić, Topological complexity of a map, Homol. Homotopy Appl. 21 (2), 107- 130, 2019.
  • [12] Y. Rami and Y. Derfoufi, A variant of the topological comlexity of a map, arXiv preprint arXiv:1809.10174, 2018.
  • [13] Y. Rudyak and S. Sarkar, Maps of degree one, relative ls category and higher topological complexities, arXiv preprint arXiv:2011.13531, 2020.
  • [14] J. Scott, On the topological complexity of maps, arXiv preprint arXiv:2011.10646, 2020.
  • [15] R. Short, Relative topological complexity of a pair, Topol. Appl. 248, 7-23, 2018.

On the targeted complexity of a map

Year 2023, , 572 - 584, 30.05.2023
https://doi.org/10.15672/hujms.1132283

Abstract

We study the topological complexity of work maps with respect to some subspaces of the configuration space and a workspace considered as the target set of the motion of robots. The motivation is to optimize and reduce the number of motion planners for work maps. In this regard, we focus on the useful set of works. We check some basic properties of the targeted complexity of maps, such as homotopical invariance, reduction, the product of maps, and so on. Then we compare these targeted complexities, and we find some inequalities in reducing the number of motion planners. We show that the relative topological complexity of pair of spaces defined by Short is a special case of the targeted complexity of work maps.

Supporting Institution

Ferdowsi University of Mashhad

Project Number

3/57099

References

  • [1] I. Basabe, J. González, Y. Rudyak, and D. Tamaki, Higher topological complexity and its symmetrization, Algebraic Geom. Topol. 14 (4), 2103-2124, 2014.
  • [2] Z. Baszczyk and M. Kaluba, Effective topological complexity of spaces with symmetries, Publ. Mat. 62, 55-74, 2018.
  • [3] A. Borat and T. Vergili, Higher homotopic distance, Topol. Methods Nonlinear Anal. 57 (2), 525-534, 2021.
  • [4] Z. Doulgeri and L. Droukas, Robot task space pid type regulation with prescribed performance guaranties, In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1644–1649, 2010.
  • [5] M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2), 211-221, 2003.
  • [6] M. Is and I. Karaca, Higher topological complexity for fibrations, arXiv preprint arXiv:2107.04465, 2021.
  • [7] E. Mac’ias-Virg’os and D. Mosquera-Lois, Homotopic distance between maps, Mathematical Proceedings of the Cambridge Philosophical Society, 172, 73-93, 2021.
  • [8] A. Murillo and J. Wu, Topological complexity of the work map, J. Topol. Anal. 13 (1), 219-238, 2021.
  • [9] P. Pavešić, Complexity of the forward kinematic map, Mech. Mach. Theory 117, 230- 243, 2017.
  • [10] P. Pavešić, A topologists view of kinematic maps and manipulation complexity, Contemp. Math. 702, 61-83, 2018.
  • [11] Petar Pavešić, Topological complexity of a map, Homol. Homotopy Appl. 21 (2), 107- 130, 2019.
  • [12] Y. Rami and Y. Derfoufi, A variant of the topological comlexity of a map, arXiv preprint arXiv:1809.10174, 2018.
  • [13] Y. Rudyak and S. Sarkar, Maps of degree one, relative ls category and higher topological complexities, arXiv preprint arXiv:2011.13531, 2020.
  • [14] J. Scott, On the topological complexity of maps, arXiv preprint arXiv:2011.10646, 2020.
  • [15] R. Short, Relative topological complexity of a pair, Topol. Appl. 248, 7-23, 2018.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Seyyed Abolfazl Aghili 0000-0002-4817-0055

Hanıeh Mırebrahımı 0000-0002-4212-9465

Ameneh Babaee 0000-0001-9897-0045

Project Number 3/57099
Publication Date May 30, 2023
Published in Issue Year 2023

Cite

APA Aghili, S. A., Mırebrahımı, H., & Babaee, A. (2023). On the targeted complexity of a map. Hacettepe Journal of Mathematics and Statistics, 52(3), 572-584. https://doi.org/10.15672/hujms.1132283
AMA Aghili SA, Mırebrahımı H, Babaee A. On the targeted complexity of a map. Hacettepe Journal of Mathematics and Statistics. May 2023;52(3):572-584. doi:10.15672/hujms.1132283
Chicago Aghili, Seyyed Abolfazl, Hanıeh Mırebrahımı, and Ameneh Babaee. “On the Targeted Complexity of a Map”. Hacettepe Journal of Mathematics and Statistics 52, no. 3 (May 2023): 572-84. https://doi.org/10.15672/hujms.1132283.
EndNote Aghili SA, Mırebrahımı H, Babaee A (May 1, 2023) On the targeted complexity of a map. Hacettepe Journal of Mathematics and Statistics 52 3 572–584.
IEEE S. A. Aghili, H. Mırebrahımı, and A. Babaee, “On the targeted complexity of a map”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 3, pp. 572–584, 2023, doi: 10.15672/hujms.1132283.
ISNAD Aghili, Seyyed Abolfazl et al. “On the Targeted Complexity of a Map”. Hacettepe Journal of Mathematics and Statistics 52/3 (May 2023), 572-584. https://doi.org/10.15672/hujms.1132283.
JAMA Aghili SA, Mırebrahımı H, Babaee A. On the targeted complexity of a map. Hacettepe Journal of Mathematics and Statistics. 2023;52:572–584.
MLA Aghili, Seyyed Abolfazl et al. “On the Targeted Complexity of a Map”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 3, 2023, pp. 572-84, doi:10.15672/hujms.1132283.
Vancouver Aghili SA, Mırebrahımı H, Babaee A. On the targeted complexity of a map. Hacettepe Journal of Mathematics and Statistics. 2023;52(3):572-84.