Research Article
BibTex RIS Cite
Year 2023, , 721 - 728, 30.05.2023
https://doi.org/10.15672/hujms.1171901

Abstract

References

  • [1] A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81(17), 1948.
  • [2] A. Borichev, D. Hadwin, and H. Yousefi, Stable and norm-stable invariant subspaces, J. Operator Theory 69(1), 3–16, 2013.
  • [3] L. Brown and A. L. Shields, Cyclic vectors in the Dirichlet space, Trans. Amer. Math. Soc. 285(1), 269–303, 1984.
  • [4] J. B Conway, A Course in Functional Analysis, Grad. Texts in Math. 96, Springer Science & Business Media, 2013.
  • [5] J. B. Conway and D. Hadwin, Stable invariant subspaces for operators on Hilbert space, Ann. Polon. Math. 66, 49–61, 1997. Volume dedicated to the memory of Wlodzimierz Mlak.
  • [6] O. El-Fallah, Y. Elmadani, and K. Kellay, Cyclicity and invariant subspaces in Dirichlet spaces, J. Funct. Anal. 270(9), 3262–3279, 2016.
  • [7] O. El-Fallah, K. Kellay, J. Mashreghi, and T. Ransford, A Primer on the Dirichlet Space, Volume 203 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2014.
  • [8] O. El-Fallah, K. Kellay, and T. Ransford, Cyclicity in the Dirichlet space, Ark. Mat. 44(1), 61–86, 2006.
  • [9] O. El-Fallah, K. Kellay, and T. Ransford, On the Brown-Shields conjecture for cyclicity in the Dirichlet space, Adv. Math. 222(6), 2196–2214, 2009.
  • [10] Y. Elmadani and I. Labghail, Cyclicity in Dirichlet spaces, Canad. Math. Bull. 62(2), 247–257, 2019.
  • [11] M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes 19, de Gruyter Studies in Mathematics 1991.
  • [12] D. Guillot, Fine boundary behavior and invariant subspaces of harmonically weighted Dirichlet spaces, Complex Anal. Oper. Theory 6(6), 1211–1230, 2012.
  • [13] P. R. Halmos, A Hilbert Space Problem Book Volume 19 of Grad. Texts in Math. Springer-Verlag, New York-Berlin, second edition, 1982. Encyclopedia of Mathematics and its Applications, 17.
  • [14] S. Luo and S. Richter, Hankel operators and invariant subspaces of the Dirichlet space, J. Lond. Math. Soc.(2) 91(2), 423–438, 2015.
  • [15] N. K. Nikolski, Operators, Functions, and Systems: An Easy Reading Vol. 1 volume 92 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2002. Hardy, Hankel, and Toeplitz, Translated from the French by Andreas Hartmann.
  • [16] N. K. Nikolski, Two problems on spectral synthesis, Journal of Soviet Mathematics 26(5), 2185–2186, 1984.
  • [17] S. Richter, Invariant subspaces of the Dirichlet shift, J. Reine Angew. Math. 386, 205–220, 1988.
  • [18] S. Richter, A representation theorem for cyclic analytic two-isometries, Trans. Amer. Math. Soc. 328(1), 325–349, 1991.
  • [19] S. Richter and C. Sundberg, A formula for the local Dirichlet integral, Michigan Math. J. 38(3), 355–379, 1991.
  • [20] S. Richter and C. Sundberg, Multipliers and invariant subspaces in the Dirichlet space, J. Operator Theory 28(1), 167–186, 1992.
  • [21] S. Richter and C. Sundberg, Invariant subspaces of the Dirichlet shift and pseudocontinuations, Trans. Amer. Math. Soc. 341(2), 863–879, 1994.
  • [22] S. Richter and F. Yilmaz, Regularity for generators of invariant subspaces of the Dirichlet shift, J. Funct. Anal. 277(7), 2117–2132, 2019.
  • [23] W. Rudin, Function Theory in Polydiscs, W. A. Benjamin, Inc., New York- Amsterdam, 1969.
  • [24] S. M. Shimorin, Approximate spectral synthesis in the Bergman space, Duke Math. J. 101(1), 1–39, 2000.
  • [25] F. Yilmaz, Approximation of invariant subspaces in some Dirichlet-type spaces, Complex Anal. Oper. Theory 12(8), 1959–1972, 2018.

Approximate spectral cosynthesis in the harmonically weighted Dirichlet spaces

Year 2023, , 721 - 728, 30.05.2023
https://doi.org/10.15672/hujms.1171901

Abstract

For a finite positive Borel measure $\mu$ on the unit circle, let $\mathcal{D}(\mu)$ be the associated harmonically weighted Dirichlet space. A shift invariant subspace $\mathcal{M}$ recognizes strong approximate spectral cosynthesis if there exists a sequence of shift invariant subspaces $\mathcal{M}_k$, with finite codimension, such that the orthogonal projections onto $\mathcal{M}_k$ converge in the strong operator topology to the orthogonal projection onto $\mathcal{M}$. If $\mu$ is a finite sum of atoms, then we show that shift invariant subspaces of $\mathcal{D}(\mu)$ admit strong approximate spectral cosynthesis.

References

  • [1] A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81(17), 1948.
  • [2] A. Borichev, D. Hadwin, and H. Yousefi, Stable and norm-stable invariant subspaces, J. Operator Theory 69(1), 3–16, 2013.
  • [3] L. Brown and A. L. Shields, Cyclic vectors in the Dirichlet space, Trans. Amer. Math. Soc. 285(1), 269–303, 1984.
  • [4] J. B Conway, A Course in Functional Analysis, Grad. Texts in Math. 96, Springer Science & Business Media, 2013.
  • [5] J. B. Conway and D. Hadwin, Stable invariant subspaces for operators on Hilbert space, Ann. Polon. Math. 66, 49–61, 1997. Volume dedicated to the memory of Wlodzimierz Mlak.
  • [6] O. El-Fallah, Y. Elmadani, and K. Kellay, Cyclicity and invariant subspaces in Dirichlet spaces, J. Funct. Anal. 270(9), 3262–3279, 2016.
  • [7] O. El-Fallah, K. Kellay, J. Mashreghi, and T. Ransford, A Primer on the Dirichlet Space, Volume 203 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2014.
  • [8] O. El-Fallah, K. Kellay, and T. Ransford, Cyclicity in the Dirichlet space, Ark. Mat. 44(1), 61–86, 2006.
  • [9] O. El-Fallah, K. Kellay, and T. Ransford, On the Brown-Shields conjecture for cyclicity in the Dirichlet space, Adv. Math. 222(6), 2196–2214, 2009.
  • [10] Y. Elmadani and I. Labghail, Cyclicity in Dirichlet spaces, Canad. Math. Bull. 62(2), 247–257, 2019.
  • [11] M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes 19, de Gruyter Studies in Mathematics 1991.
  • [12] D. Guillot, Fine boundary behavior and invariant subspaces of harmonically weighted Dirichlet spaces, Complex Anal. Oper. Theory 6(6), 1211–1230, 2012.
  • [13] P. R. Halmos, A Hilbert Space Problem Book Volume 19 of Grad. Texts in Math. Springer-Verlag, New York-Berlin, second edition, 1982. Encyclopedia of Mathematics and its Applications, 17.
  • [14] S. Luo and S. Richter, Hankel operators and invariant subspaces of the Dirichlet space, J. Lond. Math. Soc.(2) 91(2), 423–438, 2015.
  • [15] N. K. Nikolski, Operators, Functions, and Systems: An Easy Reading Vol. 1 volume 92 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2002. Hardy, Hankel, and Toeplitz, Translated from the French by Andreas Hartmann.
  • [16] N. K. Nikolski, Two problems on spectral synthesis, Journal of Soviet Mathematics 26(5), 2185–2186, 1984.
  • [17] S. Richter, Invariant subspaces of the Dirichlet shift, J. Reine Angew. Math. 386, 205–220, 1988.
  • [18] S. Richter, A representation theorem for cyclic analytic two-isometries, Trans. Amer. Math. Soc. 328(1), 325–349, 1991.
  • [19] S. Richter and C. Sundberg, A formula for the local Dirichlet integral, Michigan Math. J. 38(3), 355–379, 1991.
  • [20] S. Richter and C. Sundberg, Multipliers and invariant subspaces in the Dirichlet space, J. Operator Theory 28(1), 167–186, 1992.
  • [21] S. Richter and C. Sundberg, Invariant subspaces of the Dirichlet shift and pseudocontinuations, Trans. Amer. Math. Soc. 341(2), 863–879, 1994.
  • [22] S. Richter and F. Yilmaz, Regularity for generators of invariant subspaces of the Dirichlet shift, J. Funct. Anal. 277(7), 2117–2132, 2019.
  • [23] W. Rudin, Function Theory in Polydiscs, W. A. Benjamin, Inc., New York- Amsterdam, 1969.
  • [24] S. M. Shimorin, Approximate spectral synthesis in the Bergman space, Duke Math. J. 101(1), 1–39, 2000.
  • [25] F. Yilmaz, Approximation of invariant subspaces in some Dirichlet-type spaces, Complex Anal. Oper. Theory 12(8), 1959–1972, 2018.
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Faruk Yılmaz 0000-0003-2742-7963

Publication Date May 30, 2023
Published in Issue Year 2023

Cite

APA Yılmaz, F. (2023). Approximate spectral cosynthesis in the harmonically weighted Dirichlet spaces. Hacettepe Journal of Mathematics and Statistics, 52(3), 721-728. https://doi.org/10.15672/hujms.1171901
AMA Yılmaz F. Approximate spectral cosynthesis in the harmonically weighted Dirichlet spaces. Hacettepe Journal of Mathematics and Statistics. May 2023;52(3):721-728. doi:10.15672/hujms.1171901
Chicago Yılmaz, Faruk. “Approximate Spectral Cosynthesis in the Harmonically Weighted Dirichlet Spaces”. Hacettepe Journal of Mathematics and Statistics 52, no. 3 (May 2023): 721-28. https://doi.org/10.15672/hujms.1171901.
EndNote Yılmaz F (May 1, 2023) Approximate spectral cosynthesis in the harmonically weighted Dirichlet spaces. Hacettepe Journal of Mathematics and Statistics 52 3 721–728.
IEEE F. Yılmaz, “Approximate spectral cosynthesis in the harmonically weighted Dirichlet spaces”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 3, pp. 721–728, 2023, doi: 10.15672/hujms.1171901.
ISNAD Yılmaz, Faruk. “Approximate Spectral Cosynthesis in the Harmonically Weighted Dirichlet Spaces”. Hacettepe Journal of Mathematics and Statistics 52/3 (May 2023), 721-728. https://doi.org/10.15672/hujms.1171901.
JAMA Yılmaz F. Approximate spectral cosynthesis in the harmonically weighted Dirichlet spaces. Hacettepe Journal of Mathematics and Statistics. 2023;52:721–728.
MLA Yılmaz, Faruk. “Approximate Spectral Cosynthesis in the Harmonically Weighted Dirichlet Spaces”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 3, 2023, pp. 721-8, doi:10.15672/hujms.1171901.
Vancouver Yılmaz F. Approximate spectral cosynthesis in the harmonically weighted Dirichlet spaces. Hacettepe Journal of Mathematics and Statistics. 2023;52(3):721-8.