Year 2025,
Volume: 54 Issue: 6, 2256 - 2268, 30.12.2025
Asım Nadeem
,
Kamran Azhar
,
Agha Kashif
,
Sohail Zafar
References
-
[1] S. Akhter and R. Farooq, Metric dimension of fullerene graphs, EJGTA. 7 (1),
91–103, 2019.
-
[2] H. Bashir, Z. Zahid, A. Kashif, S. Zafar and J.B. Liu, On 2-metric resolvability in
rotationally-symmetric graphs, J. Intell. Fuzzy Syst. 40 (6), 11887–11895, 2021.
-
[3] G. Chartrand and P. Zhang, The theory and applications of resolvability in graphs,
A survey. Congr. Numer. 160, 47–68, 2003.
-
[4] A. Estrado-Moreno, J.A. Rodriguez-Velaquez and I.G. Yero, The k−metric dimension
of a graph, Appl. Math. Inf. Sci. 9 (6), 2829–2840, 2015.
-
[5] M.R. Garey and D.S. Johnson, Computers and intractability: a guide to the theory
of NP-completeness, Freeman, New York, 1979.
-
[6] C. Hernando, M. Mora, P.J. Slater and D.R. Wood, Fault-tolerant metric dimension
of graphs, In proceedings international conference on convexity in Discrete Structures;
Ramanujan Mathematical Society: Tiruchirappalli, India, 5, 81–85, 2008.
-
[7] Z. Hussain and M.M. Munir, Fault-tolerance in metric dimension of boron nanotubes
lattices, Front. Comput. Neurosci. 16, 1–12, 2023.
-
[8] M. Imran, A.Q. Baig, F. Bashir, A. Riasat, A.U.H. Bokhary, and I. Tomescu,
On metric dimension of flower graphs and convex polytopes, Util. Math. 13 (92),
389–409, 2013.
-
[9] M. Imran, S.A.U.H. Bokhary, and A.Q. Baig , On families of convex polytopes with
constant metric dimension, Comput. Math. with Appl. 60, 2629–2638, 2010.
-
[10] M. Imran, S.A.U.H. Bokhary, and A.Q. Baig , On the metric dimension of
rotationally-symmetric convex polytopes, J. Algebra Comb. Discrete Appl. 3 (2),
45–59, 2015.
-
[11] I. Javaid, M. Salman, M.A. Chaudhry and S. Shokat, Fault tolerance in resolvability,
Utilitas Mathematica. 80, 263–275, 2009.
-
[12] J.B. Liu, M.F. Nadeem and M. Azeem, Bounds on the partition dimension of convex
polytopes, Comb. Chem. High Throughput Screen. 23, 1–13, 2020.
-
[13] N. Mehreen, R. Farooq and S. Akhter, On partition dimension of fullerene graphs,
AIMS Mathematics, 3(3), 343–352, 2018.
-
[14] A. Nadeem, A. Kashif, E. Bonyah and S. Zafar, Fault tolerant partition resolvability
in convex polytoes, Math. Probl. Eng. 2022, 1–12, 2022.
-
[15] H. Raza, S. Hayat and X.F. Pan, On the fault-tolerant metric dimension of convex
polytopes, Appl. Math Comput. 339, 172–185, 2018.
-
[16] L. Saha, R. Lama, K. Tiwary, K. C. Das and Y. Shang, Fault-tolerant metric dimension
of circulant graphs, Mathematics, 10 (124), 1–16, 2022.
-
[17] H.M.A. Siddiqui, S. Hayat, A. Khan, M. Imran, A. Razzaq, and J.B. Liu, Resolvability
and fault-tolerant resolvability structures of convex polytopes, Theor. Comput.
Sci. 796, 114–128, 2019.
-
[18] C. Tian, Y. Zhang and T. Yin, Modeling of anti-tracking network based on convexpolytope
topology, In Computational ScienceICCS 2020: 20th International Conference,
Amsterdam, The Netherlands, June 35, 2020, Proceedings, Part II 20 (pp.
425-438). Springer International Publishing.
-
[19] I.G. Yero, A. Estrado-Moreno and J.A. Rodríguez-Velázquez, Computing the k−metric
dimension of graphs, Appl. Math. Comput. 300, 60–69, 2017.
-
[20] Z.B. Zheng, A. Ahmad, Z. Hussain, M. Munir, M.I. Qureshi, I. Ali and J.B.
Liu, Fault-Tolerant Metric Dimension of Generalized Wheels and Convex Polytopes,
Math. Probl. Eng. 2020, 1–8, 2020.
Fault tolerant metric resolvability of convex polytopes
Year 2025,
Volume: 54 Issue: 6, 2256 - 2268, 30.12.2025
Asım Nadeem
,
Kamran Azhar
,
Agha Kashif
,
Sohail Zafar
Abstract
Fault tolerant metric basis assigns a unique code in terms of distances to each node of the graph which works in the presence of faults. The distance based parameters are widely used in different fields like robot navigation, interconnection networks, sensor deployments, image processing and chemistry. The convex polytopes are stable and destroy resistant which make them attractive choice for interconnection networks and anti-tracking networks. The current article, computes the fault tolerant metric dimension (FTMD) of convex polytopes $B_n, C_n, E_n$ and $U_n$. The applications of FTMD have also been considered in the manuscript.
References
-
[1] S. Akhter and R. Farooq, Metric dimension of fullerene graphs, EJGTA. 7 (1),
91–103, 2019.
-
[2] H. Bashir, Z. Zahid, A. Kashif, S. Zafar and J.B. Liu, On 2-metric resolvability in
rotationally-symmetric graphs, J. Intell. Fuzzy Syst. 40 (6), 11887–11895, 2021.
-
[3] G. Chartrand and P. Zhang, The theory and applications of resolvability in graphs,
A survey. Congr. Numer. 160, 47–68, 2003.
-
[4] A. Estrado-Moreno, J.A. Rodriguez-Velaquez and I.G. Yero, The k−metric dimension
of a graph, Appl. Math. Inf. Sci. 9 (6), 2829–2840, 2015.
-
[5] M.R. Garey and D.S. Johnson, Computers and intractability: a guide to the theory
of NP-completeness, Freeman, New York, 1979.
-
[6] C. Hernando, M. Mora, P.J. Slater and D.R. Wood, Fault-tolerant metric dimension
of graphs, In proceedings international conference on convexity in Discrete Structures;
Ramanujan Mathematical Society: Tiruchirappalli, India, 5, 81–85, 2008.
-
[7] Z. Hussain and M.M. Munir, Fault-tolerance in metric dimension of boron nanotubes
lattices, Front. Comput. Neurosci. 16, 1–12, 2023.
-
[8] M. Imran, A.Q. Baig, F. Bashir, A. Riasat, A.U.H. Bokhary, and I. Tomescu,
On metric dimension of flower graphs and convex polytopes, Util. Math. 13 (92),
389–409, 2013.
-
[9] M. Imran, S.A.U.H. Bokhary, and A.Q. Baig , On families of convex polytopes with
constant metric dimension, Comput. Math. with Appl. 60, 2629–2638, 2010.
-
[10] M. Imran, S.A.U.H. Bokhary, and A.Q. Baig , On the metric dimension of
rotationally-symmetric convex polytopes, J. Algebra Comb. Discrete Appl. 3 (2),
45–59, 2015.
-
[11] I. Javaid, M. Salman, M.A. Chaudhry and S. Shokat, Fault tolerance in resolvability,
Utilitas Mathematica. 80, 263–275, 2009.
-
[12] J.B. Liu, M.F. Nadeem and M. Azeem, Bounds on the partition dimension of convex
polytopes, Comb. Chem. High Throughput Screen. 23, 1–13, 2020.
-
[13] N. Mehreen, R. Farooq and S. Akhter, On partition dimension of fullerene graphs,
AIMS Mathematics, 3(3), 343–352, 2018.
-
[14] A. Nadeem, A. Kashif, E. Bonyah and S. Zafar, Fault tolerant partition resolvability
in convex polytoes, Math. Probl. Eng. 2022, 1–12, 2022.
-
[15] H. Raza, S. Hayat and X.F. Pan, On the fault-tolerant metric dimension of convex
polytopes, Appl. Math Comput. 339, 172–185, 2018.
-
[16] L. Saha, R. Lama, K. Tiwary, K. C. Das and Y. Shang, Fault-tolerant metric dimension
of circulant graphs, Mathematics, 10 (124), 1–16, 2022.
-
[17] H.M.A. Siddiqui, S. Hayat, A. Khan, M. Imran, A. Razzaq, and J.B. Liu, Resolvability
and fault-tolerant resolvability structures of convex polytopes, Theor. Comput.
Sci. 796, 114–128, 2019.
-
[18] C. Tian, Y. Zhang and T. Yin, Modeling of anti-tracking network based on convexpolytope
topology, In Computational ScienceICCS 2020: 20th International Conference,
Amsterdam, The Netherlands, June 35, 2020, Proceedings, Part II 20 (pp.
425-438). Springer International Publishing.
-
[19] I.G. Yero, A. Estrado-Moreno and J.A. Rodríguez-Velázquez, Computing the k−metric
dimension of graphs, Appl. Math. Comput. 300, 60–69, 2017.
-
[20] Z.B. Zheng, A. Ahmad, Z. Hussain, M. Munir, M.I. Qureshi, I. Ali and J.B.
Liu, Fault-Tolerant Metric Dimension of Generalized Wheels and Convex Polytopes,
Math. Probl. Eng. 2020, 1–8, 2020.