Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 6, 2256 - 2268, 30.12.2025
https://doi.org/10.15672/hujms.1336986

Abstract

References

  • [1] S. Akhter and R. Farooq, Metric dimension of fullerene graphs, EJGTA. 7 (1), 91–103, 2019.
  • [2] H. Bashir, Z. Zahid, A. Kashif, S. Zafar and J.B. Liu, On 2-metric resolvability in rotationally-symmetric graphs, J. Intell. Fuzzy Syst. 40 (6), 11887–11895, 2021.
  • [3] G. Chartrand and P. Zhang, The theory and applications of resolvability in graphs, A survey. Congr. Numer. 160, 47–68, 2003.
  • [4] A. Estrado-Moreno, J.A. Rodriguez-Velaquez and I.G. Yero, The k−metric dimension of a graph, Appl. Math. Inf. Sci. 9 (6), 2829–2840, 2015.
  • [5] M.R. Garey and D.S. Johnson, Computers and intractability: a guide to the theory of NP-completeness, Freeman, New York, 1979.
  • [6] C. Hernando, M. Mora, P.J. Slater and D.R. Wood, Fault-tolerant metric dimension of graphs, In proceedings international conference on convexity in Discrete Structures; Ramanujan Mathematical Society: Tiruchirappalli, India, 5, 81–85, 2008.
  • [7] Z. Hussain and M.M. Munir, Fault-tolerance in metric dimension of boron nanotubes lattices, Front. Comput. Neurosci. 16, 1–12, 2023.
  • [8] M. Imran, A.Q. Baig, F. Bashir, A. Riasat, A.U.H. Bokhary, and I. Tomescu, On metric dimension of flower graphs and convex polytopes, Util. Math. 13 (92), 389–409, 2013.
  • [9] M. Imran, S.A.U.H. Bokhary, and A.Q. Baig , On families of convex polytopes with constant metric dimension, Comput. Math. with Appl. 60, 2629–2638, 2010.
  • [10] M. Imran, S.A.U.H. Bokhary, and A.Q. Baig , On the metric dimension of rotationally-symmetric convex polytopes, J. Algebra Comb. Discrete Appl. 3 (2), 45–59, 2015.
  • [11] I. Javaid, M. Salman, M.A. Chaudhry and S. Shokat, Fault tolerance in resolvability, Utilitas Mathematica. 80, 263–275, 2009.
  • [12] J.B. Liu, M.F. Nadeem and M. Azeem, Bounds on the partition dimension of convex polytopes, Comb. Chem. High Throughput Screen. 23, 1–13, 2020.
  • [13] N. Mehreen, R. Farooq and S. Akhter, On partition dimension of fullerene graphs, AIMS Mathematics, 3(3), 343–352, 2018.
  • [14] A. Nadeem, A. Kashif, E. Bonyah and S. Zafar, Fault tolerant partition resolvability in convex polytoes, Math. Probl. Eng. 2022, 1–12, 2022.
  • [15] H. Raza, S. Hayat and X.F. Pan, On the fault-tolerant metric dimension of convex polytopes, Appl. Math Comput. 339, 172–185, 2018.
  • [16] L. Saha, R. Lama, K. Tiwary, K. C. Das and Y. Shang, Fault-tolerant metric dimension of circulant graphs, Mathematics, 10 (124), 1–16, 2022.
  • [17] H.M.A. Siddiqui, S. Hayat, A. Khan, M. Imran, A. Razzaq, and J.B. Liu, Resolvability and fault-tolerant resolvability structures of convex polytopes, Theor. Comput. Sci. 796, 114–128, 2019.
  • [18] C. Tian, Y. Zhang and T. Yin, Modeling of anti-tracking network based on convexpolytope topology, In Computational ScienceICCS 2020: 20th International Conference, Amsterdam, The Netherlands, June 35, 2020, Proceedings, Part II 20 (pp. 425-438). Springer International Publishing.
  • [19] I.G. Yero, A. Estrado-Moreno and J.A. Rodríguez-Velázquez, Computing the k−metric dimension of graphs, Appl. Math. Comput. 300, 60–69, 2017.
  • [20] Z.B. Zheng, A. Ahmad, Z. Hussain, M. Munir, M.I. Qureshi, I. Ali and J.B. Liu, Fault-Tolerant Metric Dimension of Generalized Wheels and Convex Polytopes, Math. Probl. Eng. 2020, 1–8, 2020.

Fault tolerant metric resolvability of convex polytopes

Year 2025, Volume: 54 Issue: 6, 2256 - 2268, 30.12.2025
https://doi.org/10.15672/hujms.1336986

Abstract

Fault tolerant metric basis assigns a unique code in terms of distances to each node of the graph which works in the presence of faults. The distance based parameters are widely used in different fields like robot navigation, interconnection networks, sensor deployments, image processing and chemistry. The convex polytopes are stable and destroy resistant which make them attractive choice for interconnection networks and anti-tracking networks. The current article, computes the fault tolerant metric dimension (FTMD) of convex polytopes $B_n, C_n, E_n$ and $U_n$. The applications of FTMD have also been considered in the manuscript.

References

  • [1] S. Akhter and R. Farooq, Metric dimension of fullerene graphs, EJGTA. 7 (1), 91–103, 2019.
  • [2] H. Bashir, Z. Zahid, A. Kashif, S. Zafar and J.B. Liu, On 2-metric resolvability in rotationally-symmetric graphs, J. Intell. Fuzzy Syst. 40 (6), 11887–11895, 2021.
  • [3] G. Chartrand and P. Zhang, The theory and applications of resolvability in graphs, A survey. Congr. Numer. 160, 47–68, 2003.
  • [4] A. Estrado-Moreno, J.A. Rodriguez-Velaquez and I.G. Yero, The k−metric dimension of a graph, Appl. Math. Inf. Sci. 9 (6), 2829–2840, 2015.
  • [5] M.R. Garey and D.S. Johnson, Computers and intractability: a guide to the theory of NP-completeness, Freeman, New York, 1979.
  • [6] C. Hernando, M. Mora, P.J. Slater and D.R. Wood, Fault-tolerant metric dimension of graphs, In proceedings international conference on convexity in Discrete Structures; Ramanujan Mathematical Society: Tiruchirappalli, India, 5, 81–85, 2008.
  • [7] Z. Hussain and M.M. Munir, Fault-tolerance in metric dimension of boron nanotubes lattices, Front. Comput. Neurosci. 16, 1–12, 2023.
  • [8] M. Imran, A.Q. Baig, F. Bashir, A. Riasat, A.U.H. Bokhary, and I. Tomescu, On metric dimension of flower graphs and convex polytopes, Util. Math. 13 (92), 389–409, 2013.
  • [9] M. Imran, S.A.U.H. Bokhary, and A.Q. Baig , On families of convex polytopes with constant metric dimension, Comput. Math. with Appl. 60, 2629–2638, 2010.
  • [10] M. Imran, S.A.U.H. Bokhary, and A.Q. Baig , On the metric dimension of rotationally-symmetric convex polytopes, J. Algebra Comb. Discrete Appl. 3 (2), 45–59, 2015.
  • [11] I. Javaid, M. Salman, M.A. Chaudhry and S. Shokat, Fault tolerance in resolvability, Utilitas Mathematica. 80, 263–275, 2009.
  • [12] J.B. Liu, M.F. Nadeem and M. Azeem, Bounds on the partition dimension of convex polytopes, Comb. Chem. High Throughput Screen. 23, 1–13, 2020.
  • [13] N. Mehreen, R. Farooq and S. Akhter, On partition dimension of fullerene graphs, AIMS Mathematics, 3(3), 343–352, 2018.
  • [14] A. Nadeem, A. Kashif, E. Bonyah and S. Zafar, Fault tolerant partition resolvability in convex polytoes, Math. Probl. Eng. 2022, 1–12, 2022.
  • [15] H. Raza, S. Hayat and X.F. Pan, On the fault-tolerant metric dimension of convex polytopes, Appl. Math Comput. 339, 172–185, 2018.
  • [16] L. Saha, R. Lama, K. Tiwary, K. C. Das and Y. Shang, Fault-tolerant metric dimension of circulant graphs, Mathematics, 10 (124), 1–16, 2022.
  • [17] H.M.A. Siddiqui, S. Hayat, A. Khan, M. Imran, A. Razzaq, and J.B. Liu, Resolvability and fault-tolerant resolvability structures of convex polytopes, Theor. Comput. Sci. 796, 114–128, 2019.
  • [18] C. Tian, Y. Zhang and T. Yin, Modeling of anti-tracking network based on convexpolytope topology, In Computational ScienceICCS 2020: 20th International Conference, Amsterdam, The Netherlands, June 35, 2020, Proceedings, Part II 20 (pp. 425-438). Springer International Publishing.
  • [19] I.G. Yero, A. Estrado-Moreno and J.A. Rodríguez-Velázquez, Computing the k−metric dimension of graphs, Appl. Math. Comput. 300, 60–69, 2017.
  • [20] Z.B. Zheng, A. Ahmad, Z. Hussain, M. Munir, M.I. Qureshi, I. Ali and J.B. Liu, Fault-Tolerant Metric Dimension of Generalized Wheels and Convex Polytopes, Math. Probl. Eng. 2020, 1–8, 2020.
There are 20 citations in total.

Details

Primary Language English
Subjects Experimental Mathematics
Journal Section Research Article
Authors

Asım Nadeem 0000-0002-0568-1592

Kamran Azhar 0000-0002-3584-9085

Agha Kashif 0000-0002-1097-3450

Sohail Zafar 0000-0002-8177-7799

Early Pub Date April 11, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 54 Issue: 6

Cite

APA Nadeem, A., Azhar, K., Kashif, A., Zafar, S. (2025). Fault tolerant metric resolvability of convex polytopes. Hacettepe Journal of Mathematics and Statistics, 54(6), 2256-2268. https://doi.org/10.15672/hujms.1336986
AMA Nadeem A, Azhar K, Kashif A, Zafar S. Fault tolerant metric resolvability of convex polytopes. Hacettepe Journal of Mathematics and Statistics. December 2025;54(6):2256-2268. doi:10.15672/hujms.1336986
Chicago Nadeem, Asım, Kamran Azhar, Agha Kashif, and Sohail Zafar. “Fault Tolerant Metric Resolvability of Convex Polytopes”. Hacettepe Journal of Mathematics and Statistics 54, no. 6 (December 2025): 2256-68. https://doi.org/10.15672/hujms.1336986.
EndNote Nadeem A, Azhar K, Kashif A, Zafar S (December 1, 2025) Fault tolerant metric resolvability of convex polytopes. Hacettepe Journal of Mathematics and Statistics 54 6 2256–2268.
IEEE A. Nadeem, K. Azhar, A. Kashif, and S. Zafar, “Fault tolerant metric resolvability of convex polytopes”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, pp. 2256–2268, 2025, doi: 10.15672/hujms.1336986.
ISNAD Nadeem, Asım et al. “Fault Tolerant Metric Resolvability of Convex Polytopes”. Hacettepe Journal of Mathematics and Statistics 54/6 (December2025), 2256-2268. https://doi.org/10.15672/hujms.1336986.
JAMA Nadeem A, Azhar K, Kashif A, Zafar S. Fault tolerant metric resolvability of convex polytopes. Hacettepe Journal of Mathematics and Statistics. 2025;54:2256–2268.
MLA Nadeem, Asım et al. “Fault Tolerant Metric Resolvability of Convex Polytopes”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, 2025, pp. 2256-68, doi:10.15672/hujms.1336986.
Vancouver Nadeem A, Azhar K, Kashif A, Zafar S. Fault tolerant metric resolvability of convex polytopes. Hacettepe Journal of Mathematics and Statistics. 2025;54(6):2256-68.