Year 2025,
Volume: 54 Issue: 6, 2244 - 2255, 30.12.2025
Kendal Dorak
,
Fatih Deringöz
,
Vagif Guliyev
References
-
[1] D.R. Adams, Morrey Spaces, in: Lecture Notes in Applied and Numerical Harmonic
Analysis, Birkhäuser, 2015.
-
[2] F. Deringoz, V.S. Guliyev and S. Samko, Boundedness of maximal and singular operators
on generalized Orlicz-Morrey spaces, Operator Theory, Operator Algebras and
Applications, Series: Operator Theory: Advances and Applications 242, 139–158,
2014.
-
[3] F. Deringoz, V.S. Guliyev and S.G. Hasanov, Maximal operator and its commutators
on generalized weighted Orlicz-Morrey spaces, Tokyo J. Math. 41 (2), 347369, 2018.
-
[4] F. Deringoz, V.S. Guliyev, E. Nakai, Y. Sawano and M. Shi, Generalized fractional
maximal and integral operators on Orlicz and generalized Orlicz-Morrey spaces of the
third kind, Positivity 23 (3), 727757, 2019.
-
[5] F. Deringoz, V.S. Guliyev, M.N Omarova and M.A. Ragusa, Calderón-Zygmund operators
and their commutators on generalized weighted Orlicz-Morrey spaces, Bull.
Math. Sci. 13 (1), 26 pp, 2023.
-
[6] S. Gala, Y. Sawano and H. Tanaka, A remark on two generalized Orlicz-Morrey spaces,
J. Approx. Theory 98, 1-9, 2015.
-
[7] V.S. Guliyev, Boundedness of the maximal, potential and singular operators in the
generalized Morrey spaces, J. Inequal. Appl. Art. ID 503948, 20 pp, 2009.
-
[8] V.S. Guliyev and S. Samko, Maximal, potential, and singular operators in the generalized
variable exponent Morrey spaces on unbounded sets, J. Math. Sci. (N.Y.) 193
(2), 228248, 2013.
-
[9] V.S. Guliyev and F. Deringoz, On the Riesz potential and its commutators on generalized
Orlicz-Morrey spaces, J. Funct. Spaces Art. ID 617414, 11 pp, 2014.
-
[10] V.S. Guliyev, S.G. Hasanov, Y. Sawano and T. Noi, Non-smooth atomic decompositions
for generalized Orlicz-Morrey spaces of the third kind, Acta Appl. Math. 145,
133-174, 2016.
-
[11] V.S. Guliyev and F. Deringoz, Riesz potential and its commutators on generalized
weighted Orlicz-Morrey spaces, Math. Nachr. 295 (4), 706724, 2022.
-
[12] V.S. Guliyev, M.N Omarova and M.A. Ragusa, Characterizations for the genuine
Calder’on-Zygmund operators and commutators on generalized Orlicz-Morrey spaces,
Adv. Nonlinear Anal. 12 (1), 16 pp, 2023.
-
[13] P. Harjulehto and P. Hästö, Orlicz spaces and generalized Orlicz spaces, Lecture Notes
in Mathematics 2236, Springer, Cham, 2019.
-
[14] P.A. Hästö, The maximal operator on generalized Orlicz spaces, J. Funct. Anal. 269
(12), 4038-4048, 2015.
-
[15] L.I. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36, 505-
510, 1972.
-
[16] A. Karppinen, Fractional operators and their commutators on generalized Orlicz
spaces, Opuscula Math. 42 (4), 583-604, 2022.
-
[17] Y. Liang, E. Nakai, D. Yang and J. Zhang, Boundedness of intrinsic Littlewood-Paley
functions on Musielak-Orlicz Morrey and Campanato spaces, Banach J. Math. Anal.
8 (1), 221-268, 2014.
-
[18] F. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Boundedness of maximal operators
and Sobolevs inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math. 137, 76-
96, 2013.
-
[19] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations,
Trans. Amer. Math. Soc. 43, 126-166, 1938.
-
[20] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics 1034,
Springer, Berlin, 1983.
-
[21] E. Nakai, Generalized fractional integrals on Orlicz-Morrey spaces, In: Banach and
Function Spaces, (Kitakyushu, 2003), Yokohama Publishers, Yokohama, 323-333,
2004.
-
[22] E. Nakai, Pointwise multipliers on Musielak-Orlicz-Morrey spaces, Function spaces
and inequalities, 257281, Springer Proc. Math. Stat., 206, Springer, Singapore, 2017.
-
[23] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co. Ltd., Tokyo, 1950.
-
[24] H. Nakano, Topology and Linear Topological Spaces, Maruzen Co. Ltd., Tokyo, 1951.
-
[25] A. Nekvinda, Hardy-Littlewood maximal operator on $L^{p(x)}(\mathbb{R}^n)$, Math. Ineq. Appl. 7,
255-266, 2004.
-
[26] W. Orlicz, Über konjugierte Exponentenfolgen, Stud. Math. 3, 200-211, 1931.
-
[27] H. Rafeiro, N. Samko and S. Samko, MorreyCampanato spaces: an overview, in:
Operator Theory, Pseudo-Differential Equations and Mathematical Physics, in: Advances
and Applications 228, 293323, Springer, Basel, 2013.
-
[28] Y. Sawano, S. Sugano and H. Tanaka, Orlicz-Morrey spaces and fractional operators,
Potential Anal. 36 (4), 517-556, 2012.
-
[29] Y. Sawano, G. Di Fazio and D.I. Hakim, Morrey spacesintroduction and applications
to integral operators and PDE’s, Vol. I, Monographs and Research Notes in Mathematics,
CRC Press, Boca Raton, FL, 2020.
-
[30] Y. Sawano, G. Di Fazio and D.I. Hakim, Morrey spacesintroduction and applications
to integral operators and PDE’s, Vol. II, Monographs and Research Notes in Mathematics,
CRC Press, Boca Raton, FL, 2020.
-
[31] D. Yang, Y. Liang and L.D. Ky, Real-variable theory of Musielak-Orlicz Hardy spaces,
Lecture Notes in Mathematics 2182, Springer, Cham, 2017.
Boundedness of the maximal operator and the Riesz potential on Musielak-Orlicz-Morrey spaces
Year 2025,
Volume: 54 Issue: 6, 2244 - 2255, 30.12.2025
Kendal Dorak
,
Fatih Deringöz
,
Vagif Guliyev
Abstract
In this paper, we investigate the strong and weak type boundedness of the maximal operator in Musielak-Orlicz-Morrey spaces. As an application of this boundedness, we give a sufficient condition for the strong and weak Adams type boundedness of the Riesz potential in these spaces.
References
-
[1] D.R. Adams, Morrey Spaces, in: Lecture Notes in Applied and Numerical Harmonic
Analysis, Birkhäuser, 2015.
-
[2] F. Deringoz, V.S. Guliyev and S. Samko, Boundedness of maximal and singular operators
on generalized Orlicz-Morrey spaces, Operator Theory, Operator Algebras and
Applications, Series: Operator Theory: Advances and Applications 242, 139–158,
2014.
-
[3] F. Deringoz, V.S. Guliyev and S.G. Hasanov, Maximal operator and its commutators
on generalized weighted Orlicz-Morrey spaces, Tokyo J. Math. 41 (2), 347369, 2018.
-
[4] F. Deringoz, V.S. Guliyev, E. Nakai, Y. Sawano and M. Shi, Generalized fractional
maximal and integral operators on Orlicz and generalized Orlicz-Morrey spaces of the
third kind, Positivity 23 (3), 727757, 2019.
-
[5] F. Deringoz, V.S. Guliyev, M.N Omarova and M.A. Ragusa, Calderón-Zygmund operators
and their commutators on generalized weighted Orlicz-Morrey spaces, Bull.
Math. Sci. 13 (1), 26 pp, 2023.
-
[6] S. Gala, Y. Sawano and H. Tanaka, A remark on two generalized Orlicz-Morrey spaces,
J. Approx. Theory 98, 1-9, 2015.
-
[7] V.S. Guliyev, Boundedness of the maximal, potential and singular operators in the
generalized Morrey spaces, J. Inequal. Appl. Art. ID 503948, 20 pp, 2009.
-
[8] V.S. Guliyev and S. Samko, Maximal, potential, and singular operators in the generalized
variable exponent Morrey spaces on unbounded sets, J. Math. Sci. (N.Y.) 193
(2), 228248, 2013.
-
[9] V.S. Guliyev and F. Deringoz, On the Riesz potential and its commutators on generalized
Orlicz-Morrey spaces, J. Funct. Spaces Art. ID 617414, 11 pp, 2014.
-
[10] V.S. Guliyev, S.G. Hasanov, Y. Sawano and T. Noi, Non-smooth atomic decompositions
for generalized Orlicz-Morrey spaces of the third kind, Acta Appl. Math. 145,
133-174, 2016.
-
[11] V.S. Guliyev and F. Deringoz, Riesz potential and its commutators on generalized
weighted Orlicz-Morrey spaces, Math. Nachr. 295 (4), 706724, 2022.
-
[12] V.S. Guliyev, M.N Omarova and M.A. Ragusa, Characterizations for the genuine
Calder’on-Zygmund operators and commutators on generalized Orlicz-Morrey spaces,
Adv. Nonlinear Anal. 12 (1), 16 pp, 2023.
-
[13] P. Harjulehto and P. Hästö, Orlicz spaces and generalized Orlicz spaces, Lecture Notes
in Mathematics 2236, Springer, Cham, 2019.
-
[14] P.A. Hästö, The maximal operator on generalized Orlicz spaces, J. Funct. Anal. 269
(12), 4038-4048, 2015.
-
[15] L.I. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36, 505-
510, 1972.
-
[16] A. Karppinen, Fractional operators and their commutators on generalized Orlicz
spaces, Opuscula Math. 42 (4), 583-604, 2022.
-
[17] Y. Liang, E. Nakai, D. Yang and J. Zhang, Boundedness of intrinsic Littlewood-Paley
functions on Musielak-Orlicz Morrey and Campanato spaces, Banach J. Math. Anal.
8 (1), 221-268, 2014.
-
[18] F. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Boundedness of maximal operators
and Sobolevs inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math. 137, 76-
96, 2013.
-
[19] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations,
Trans. Amer. Math. Soc. 43, 126-166, 1938.
-
[20] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics 1034,
Springer, Berlin, 1983.
-
[21] E. Nakai, Generalized fractional integrals on Orlicz-Morrey spaces, In: Banach and
Function Spaces, (Kitakyushu, 2003), Yokohama Publishers, Yokohama, 323-333,
2004.
-
[22] E. Nakai, Pointwise multipliers on Musielak-Orlicz-Morrey spaces, Function spaces
and inequalities, 257281, Springer Proc. Math. Stat., 206, Springer, Singapore, 2017.
-
[23] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co. Ltd., Tokyo, 1950.
-
[24] H. Nakano, Topology and Linear Topological Spaces, Maruzen Co. Ltd., Tokyo, 1951.
-
[25] A. Nekvinda, Hardy-Littlewood maximal operator on $L^{p(x)}(\mathbb{R}^n)$, Math. Ineq. Appl. 7,
255-266, 2004.
-
[26] W. Orlicz, Über konjugierte Exponentenfolgen, Stud. Math. 3, 200-211, 1931.
-
[27] H. Rafeiro, N. Samko and S. Samko, MorreyCampanato spaces: an overview, in:
Operator Theory, Pseudo-Differential Equations and Mathematical Physics, in: Advances
and Applications 228, 293323, Springer, Basel, 2013.
-
[28] Y. Sawano, S. Sugano and H. Tanaka, Orlicz-Morrey spaces and fractional operators,
Potential Anal. 36 (4), 517-556, 2012.
-
[29] Y. Sawano, G. Di Fazio and D.I. Hakim, Morrey spacesintroduction and applications
to integral operators and PDE’s, Vol. I, Monographs and Research Notes in Mathematics,
CRC Press, Boca Raton, FL, 2020.
-
[30] Y. Sawano, G. Di Fazio and D.I. Hakim, Morrey spacesintroduction and applications
to integral operators and PDE’s, Vol. II, Monographs and Research Notes in Mathematics,
CRC Press, Boca Raton, FL, 2020.
-
[31] D. Yang, Y. Liang and L.D. Ky, Real-variable theory of Musielak-Orlicz Hardy spaces,
Lecture Notes in Mathematics 2182, Springer, Cham, 2017.