Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 6, 2244 - 2255, 30.12.2025
https://doi.org/10.15672/hujms.1472848

Abstract

References

  • [1] D.R. Adams, Morrey Spaces, in: Lecture Notes in Applied and Numerical Harmonic Analysis, Birkhäuser, 2015.
  • [2] F. Deringoz, V.S. Guliyev and S. Samko, Boundedness of maximal and singular operators on generalized Orlicz-Morrey spaces, Operator Theory, Operator Algebras and Applications, Series: Operator Theory: Advances and Applications 242, 139–158, 2014.
  • [3] F. Deringoz, V.S. Guliyev and S.G. Hasanov, Maximal operator and its commutators on generalized weighted Orlicz-Morrey spaces, Tokyo J. Math. 41 (2), 347369, 2018.
  • [4] F. Deringoz, V.S. Guliyev, E. Nakai, Y. Sawano and M. Shi, Generalized fractional maximal and integral operators on Orlicz and generalized Orlicz-Morrey spaces of the third kind, Positivity 23 (3), 727757, 2019.
  • [5] F. Deringoz, V.S. Guliyev, M.N Omarova and M.A. Ragusa, Calderón-Zygmund operators and their commutators on generalized weighted Orlicz-Morrey spaces, Bull. Math. Sci. 13 (1), 26 pp, 2023.
  • [6] S. Gala, Y. Sawano and H. Tanaka, A remark on two generalized Orlicz-Morrey spaces, J. Approx. Theory 98, 1-9, 2015.
  • [7] V.S. Guliyev, Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J. Inequal. Appl. Art. ID 503948, 20 pp, 2009.
  • [8] V.S. Guliyev and S. Samko, Maximal, potential, and singular operators in the generalized variable exponent Morrey spaces on unbounded sets, J. Math. Sci. (N.Y.) 193 (2), 228248, 2013.
  • [9] V.S. Guliyev and F. Deringoz, On the Riesz potential and its commutators on generalized Orlicz-Morrey spaces, J. Funct. Spaces Art. ID 617414, 11 pp, 2014.
  • [10] V.S. Guliyev, S.G. Hasanov, Y. Sawano and T. Noi, Non-smooth atomic decompositions for generalized Orlicz-Morrey spaces of the third kind, Acta Appl. Math. 145, 133-174, 2016.
  • [11] V.S. Guliyev and F. Deringoz, Riesz potential and its commutators on generalized weighted Orlicz-Morrey spaces, Math. Nachr. 295 (4), 706724, 2022.
  • [12] V.S. Guliyev, M.N Omarova and M.A. Ragusa, Characterizations for the genuine Calder’on-Zygmund operators and commutators on generalized Orlicz-Morrey spaces, Adv. Nonlinear Anal. 12 (1), 16 pp, 2023.
  • [13] P. Harjulehto and P. Hästö, Orlicz spaces and generalized Orlicz spaces, Lecture Notes in Mathematics 2236, Springer, Cham, 2019.
  • [14] P.A. Hästö, The maximal operator on generalized Orlicz spaces, J. Funct. Anal. 269 (12), 4038-4048, 2015.
  • [15] L.I. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36, 505- 510, 1972.
  • [16] A. Karppinen, Fractional operators and their commutators on generalized Orlicz spaces, Opuscula Math. 42 (4), 583-604, 2022.
  • [17] Y. Liang, E. Nakai, D. Yang and J. Zhang, Boundedness of intrinsic Littlewood-Paley functions on Musielak-Orlicz Morrey and Campanato spaces, Banach J. Math. Anal. 8 (1), 221-268, 2014.
  • [18] F. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Boundedness of maximal operators and Sobolevs inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math. 137, 76- 96, 2013.
  • [19] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43, 126-166, 1938.
  • [20] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics 1034, Springer, Berlin, 1983.
  • [21] E. Nakai, Generalized fractional integrals on Orlicz-Morrey spaces, In: Banach and Function Spaces, (Kitakyushu, 2003), Yokohama Publishers, Yokohama, 323-333, 2004.
  • [22] E. Nakai, Pointwise multipliers on Musielak-Orlicz-Morrey spaces, Function spaces and inequalities, 257281, Springer Proc. Math. Stat., 206, Springer, Singapore, 2017.
  • [23] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co. Ltd., Tokyo, 1950.
  • [24] H. Nakano, Topology and Linear Topological Spaces, Maruzen Co. Ltd., Tokyo, 1951.
  • [25] A. Nekvinda, Hardy-Littlewood maximal operator on $L^{p(x)}(\mathbb{R}^n)$, Math. Ineq. Appl. 7, 255-266, 2004.
  • [26] W. Orlicz, Über konjugierte Exponentenfolgen, Stud. Math. 3, 200-211, 1931.
  • [27] H. Rafeiro, N. Samko and S. Samko, MorreyCampanato spaces: an overview, in: Operator Theory, Pseudo-Differential Equations and Mathematical Physics, in: Advances and Applications 228, 293323, Springer, Basel, 2013.
  • [28] Y. Sawano, S. Sugano and H. Tanaka, Orlicz-Morrey spaces and fractional operators, Potential Anal. 36 (4), 517-556, 2012.
  • [29] Y. Sawano, G. Di Fazio and D.I. Hakim, Morrey spacesintroduction and applications to integral operators and PDE’s, Vol. I, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2020.
  • [30] Y. Sawano, G. Di Fazio and D.I. Hakim, Morrey spacesintroduction and applications to integral operators and PDE’s, Vol. II, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2020.
  • [31] D. Yang, Y. Liang and L.D. Ky, Real-variable theory of Musielak-Orlicz Hardy spaces, Lecture Notes in Mathematics 2182, Springer, Cham, 2017.

Boundedness of the maximal operator and the Riesz potential on Musielak-Orlicz-Morrey spaces

Year 2025, Volume: 54 Issue: 6, 2244 - 2255, 30.12.2025
https://doi.org/10.15672/hujms.1472848

Abstract

In this paper, we investigate the strong and weak type boundedness of the maximal operator in Musielak-Orlicz-Morrey spaces. As an application of this boundedness, we give a sufficient condition for the strong and weak Adams type boundedness of the Riesz potential in these spaces.

References

  • [1] D.R. Adams, Morrey Spaces, in: Lecture Notes in Applied and Numerical Harmonic Analysis, Birkhäuser, 2015.
  • [2] F. Deringoz, V.S. Guliyev and S. Samko, Boundedness of maximal and singular operators on generalized Orlicz-Morrey spaces, Operator Theory, Operator Algebras and Applications, Series: Operator Theory: Advances and Applications 242, 139–158, 2014.
  • [3] F. Deringoz, V.S. Guliyev and S.G. Hasanov, Maximal operator and its commutators on generalized weighted Orlicz-Morrey spaces, Tokyo J. Math. 41 (2), 347369, 2018.
  • [4] F. Deringoz, V.S. Guliyev, E. Nakai, Y. Sawano and M. Shi, Generalized fractional maximal and integral operators on Orlicz and generalized Orlicz-Morrey spaces of the third kind, Positivity 23 (3), 727757, 2019.
  • [5] F. Deringoz, V.S. Guliyev, M.N Omarova and M.A. Ragusa, Calderón-Zygmund operators and their commutators on generalized weighted Orlicz-Morrey spaces, Bull. Math. Sci. 13 (1), 26 pp, 2023.
  • [6] S. Gala, Y. Sawano and H. Tanaka, A remark on two generalized Orlicz-Morrey spaces, J. Approx. Theory 98, 1-9, 2015.
  • [7] V.S. Guliyev, Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J. Inequal. Appl. Art. ID 503948, 20 pp, 2009.
  • [8] V.S. Guliyev and S. Samko, Maximal, potential, and singular operators in the generalized variable exponent Morrey spaces on unbounded sets, J. Math. Sci. (N.Y.) 193 (2), 228248, 2013.
  • [9] V.S. Guliyev and F. Deringoz, On the Riesz potential and its commutators on generalized Orlicz-Morrey spaces, J. Funct. Spaces Art. ID 617414, 11 pp, 2014.
  • [10] V.S. Guliyev, S.G. Hasanov, Y. Sawano and T. Noi, Non-smooth atomic decompositions for generalized Orlicz-Morrey spaces of the third kind, Acta Appl. Math. 145, 133-174, 2016.
  • [11] V.S. Guliyev and F. Deringoz, Riesz potential and its commutators on generalized weighted Orlicz-Morrey spaces, Math. Nachr. 295 (4), 706724, 2022.
  • [12] V.S. Guliyev, M.N Omarova and M.A. Ragusa, Characterizations for the genuine Calder’on-Zygmund operators and commutators on generalized Orlicz-Morrey spaces, Adv. Nonlinear Anal. 12 (1), 16 pp, 2023.
  • [13] P. Harjulehto and P. Hästö, Orlicz spaces and generalized Orlicz spaces, Lecture Notes in Mathematics 2236, Springer, Cham, 2019.
  • [14] P.A. Hästö, The maximal operator on generalized Orlicz spaces, J. Funct. Anal. 269 (12), 4038-4048, 2015.
  • [15] L.I. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36, 505- 510, 1972.
  • [16] A. Karppinen, Fractional operators and their commutators on generalized Orlicz spaces, Opuscula Math. 42 (4), 583-604, 2022.
  • [17] Y. Liang, E. Nakai, D. Yang and J. Zhang, Boundedness of intrinsic Littlewood-Paley functions on Musielak-Orlicz Morrey and Campanato spaces, Banach J. Math. Anal. 8 (1), 221-268, 2014.
  • [18] F. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Boundedness of maximal operators and Sobolevs inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math. 137, 76- 96, 2013.
  • [19] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43, 126-166, 1938.
  • [20] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics 1034, Springer, Berlin, 1983.
  • [21] E. Nakai, Generalized fractional integrals on Orlicz-Morrey spaces, In: Banach and Function Spaces, (Kitakyushu, 2003), Yokohama Publishers, Yokohama, 323-333, 2004.
  • [22] E. Nakai, Pointwise multipliers on Musielak-Orlicz-Morrey spaces, Function spaces and inequalities, 257281, Springer Proc. Math. Stat., 206, Springer, Singapore, 2017.
  • [23] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co. Ltd., Tokyo, 1950.
  • [24] H. Nakano, Topology and Linear Topological Spaces, Maruzen Co. Ltd., Tokyo, 1951.
  • [25] A. Nekvinda, Hardy-Littlewood maximal operator on $L^{p(x)}(\mathbb{R}^n)$, Math. Ineq. Appl. 7, 255-266, 2004.
  • [26] W. Orlicz, Über konjugierte Exponentenfolgen, Stud. Math. 3, 200-211, 1931.
  • [27] H. Rafeiro, N. Samko and S. Samko, MorreyCampanato spaces: an overview, in: Operator Theory, Pseudo-Differential Equations and Mathematical Physics, in: Advances and Applications 228, 293323, Springer, Basel, 2013.
  • [28] Y. Sawano, S. Sugano and H. Tanaka, Orlicz-Morrey spaces and fractional operators, Potential Anal. 36 (4), 517-556, 2012.
  • [29] Y. Sawano, G. Di Fazio and D.I. Hakim, Morrey spacesintroduction and applications to integral operators and PDE’s, Vol. I, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2020.
  • [30] Y. Sawano, G. Di Fazio and D.I. Hakim, Morrey spacesintroduction and applications to integral operators and PDE’s, Vol. II, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2020.
  • [31] D. Yang, Y. Liang and L.D. Ky, Real-variable theory of Musielak-Orlicz Hardy spaces, Lecture Notes in Mathematics 2182, Springer, Cham, 2017.
There are 31 citations in total.

Details

Primary Language English
Subjects Lie Groups, Harmonic and Fourier Analysis
Journal Section Research Article
Authors

Kendal Dorak 0000-0002-7889-6869

Fatih Deringöz 0000-0002-2260-3641

Vagif Guliyev 0000-0001-7486-0298

Submission Date April 26, 2024
Acceptance Date March 14, 2025
Early Pub Date April 11, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 54 Issue: 6

Cite

APA Dorak, K., Deringöz, F., & Guliyev, V. (2025). Boundedness of the maximal operator and the Riesz potential on Musielak-Orlicz-Morrey spaces. Hacettepe Journal of Mathematics and Statistics, 54(6), 2244-2255. https://doi.org/10.15672/hujms.1472848
AMA Dorak K, Deringöz F, Guliyev V. Boundedness of the maximal operator and the Riesz potential on Musielak-Orlicz-Morrey spaces. Hacettepe Journal of Mathematics and Statistics. December 2025;54(6):2244-2255. doi:10.15672/hujms.1472848
Chicago Dorak, Kendal, Fatih Deringöz, and Vagif Guliyev. “Boundedness of the Maximal Operator and the Riesz Potential on Musielak-Orlicz-Morrey Spaces”. Hacettepe Journal of Mathematics and Statistics 54, no. 6 (December 2025): 2244-55. https://doi.org/10.15672/hujms.1472848.
EndNote Dorak K, Deringöz F, Guliyev V (December 1, 2025) Boundedness of the maximal operator and the Riesz potential on Musielak-Orlicz-Morrey spaces. Hacettepe Journal of Mathematics and Statistics 54 6 2244–2255.
IEEE K. Dorak, F. Deringöz, and V. Guliyev, “Boundedness of the maximal operator and the Riesz potential on Musielak-Orlicz-Morrey spaces”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, pp. 2244–2255, 2025, doi: 10.15672/hujms.1472848.
ISNAD Dorak, Kendal et al. “Boundedness of the Maximal Operator and the Riesz Potential on Musielak-Orlicz-Morrey Spaces”. Hacettepe Journal of Mathematics and Statistics 54/6 (December2025), 2244-2255. https://doi.org/10.15672/hujms.1472848.
JAMA Dorak K, Deringöz F, Guliyev V. Boundedness of the maximal operator and the Riesz potential on Musielak-Orlicz-Morrey spaces. Hacettepe Journal of Mathematics and Statistics. 2025;54:2244–2255.
MLA Dorak, Kendal et al. “Boundedness of the Maximal Operator and the Riesz Potential on Musielak-Orlicz-Morrey Spaces”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, 2025, pp. 2244-55, doi:10.15672/hujms.1472848.
Vancouver Dorak K, Deringöz F, Guliyev V. Boundedness of the maximal operator and the Riesz potential on Musielak-Orlicz-Morrey spaces. Hacettepe Journal of Mathematics and Statistics. 2025;54(6):2244-55.