Research Article
BibTex RIS Cite

Zero intersection graph of annihilator ideals of modules

Year 2025, Volume: 54 Issue: 6, 2182 - 2194, 30.12.2025
https://doi.org/10.15672/hujms.1485903

Abstract

This paper aims to associate a new graph to nonzero unital modules over commutative rings. Let $R$ be a commutative ring having a nonzero identity and $M$ be a nonzero unital $R$-module. The zero intersection graph of annihilator ideals of $R$-module $M$, denoted by $\mathfrak{C}_{R}(M)$, is a simple (undirected) graph whose vertex set $M^{\star}=M-\{0\},\ $and two distinct vertices $m$ and $m^{\prime}$ are adjacent if $ann_{R}(m)\cap ann_{R}(m^{\prime})=(0).$\ We investigate the conditions under which $\mathfrak{C}_{R}(M)$ is a star graph, bipartite graph, complete graph, edgeless graph. Furthermore, we characterize certain classes of modules and rings such as torsion-free modules, torsion modules, semisimple modules, quasi-regular rings, and modules satisfying Property $T$ in terms of their graphical properties.

References

  • [1] S. Akbaria, H.A. Tavallaeeb and S. Khalashi Ghezelahmad, Intersection graph of submodules of a module, J. Algebra Appl. 10, 1-8, 2011.
  • [2] D.D. Anderson, T. Arabaci, Ü. Tekir and S. Koç, On S-multiplication modules, Comm. Algebra 48(8), 3398-3407, 2020.
  • [3] D.F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320(7), 2706-2719, 2008.
  • [4] D.D. Anderson and S. Chun, The set of torsion elements of a module, Comm. Algebra 42(4), 1835-1843, 2014.
  • [5] D.D. Anderson and S. Chun, Annihilator conditions on modules over commutative rings, J. Algebra Appl. 16(08), 1750143, 2017.
  • [6] D.D. Anderson and S. Chun, McCoy modules and related modules over commutative rings, Comm. Algebra 45(6), 2593-2601, 2017.
  • [7] F.W. Anderson and K.R. Fuller, Rings and categories of modules (Vol. 13), Springer Science & Business Media, 2012.
  • [8] A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra 42(1), 108-121, 2014.
  • [9] A. Barnard, Multiplication modules, J. Algebra. 71(1), 174-178, 1981.
  • [10] I. Beck, Coloring of commutative rings, J. Algebra 116(1), 208-226, 1988.
  • [11] M. Behboodi, Zero divisor graphs for modules over commutative rings, J. Commut. Algebra 4(2), 175-197, 2012.
  • [12] D. Bennis, J. Mikram and F. Taraza, On the extended zero divisor graph of commutative rings, Turk. J. Math. 40(2), 376-388, 2016.
  • [13] I. Chakrabarty, S. Ghosh, T.K. Mukherjee and M.K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309, 5381-5392, 2009.
  • [14] G. Chartrand and P. Zhang, A First Course in Graph Theory, Dover Publications, New York, 2012.
  • [15] A.Y. Darani, Notes on annihilator conditions in modules over commutative rings, An. Stinnt. Univ. Ovidius Constanta 18, 59-72, 2010.
  • [16] R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
  • [17] M. Evans, On commutative PP rings, Pacific J. Math. 41(3), 687-697, 1972.
  • [18] Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. Algebra 16(4), 755-779, 1988.
  • [19] Y. El-Khabchi, E.M. Bouba and S. Koç, On the global powerful alliance number of zero-divisor graphs of finite commutative rings, J. Algebra Appl. 24(3), 2550089, 2025.
  • [20] J.A. Huckaba, Commutative rings with zero divisors, Marcel Dekker Inc., 1988.
  • [21] C. Jayaram and Ü. Tekir, von Neumann regular modules, Comm. Algebra 46(5), 2205-2217, 2018.
  • [22] C. Jayaram, Ü. Tekir and S. Koç, On Quasi regular modules and trivial extension, Hacettepe J. Math. Stat. 50(1), 120-134, 2021.
  • [23] C. Jayaram, Ü. Tekir and S. Koç, On Baer modules, Rev. Un. Mat. Argentina 63(1), 109-128, 2022
  • [24] C. Jayaram, Ü. Tekir, S. Koç and S. Çeken, On normal modules, Comm. Algebra 51(4), 1479-1491, 2023.
  • [25] M.L. Knox, R. Levy, W.W. McGovern and J. Shapiro, Generalizations of complemented rings with applications to rings of functions, J. Algebra Appl. 8(1), 17-40, 2009.
  • [26] S. Koç, On Strongly $\pi$-regular Modules, Sakarya Uni. J. Science 24(4), 675-684, 2020.
  • [27] M.D. Larsen and P.J. MacCarthy, Multiplicative theory of ideals, New York: Academic Press, 1971.
  • [28] T.K. Lee and Y. Zhou, Reduced modules, Rings, modules, algebras and abelian groups 236, Lecture Notes in Pure and Appl. Mathematics, pp. 365-377, Marcel Dekker, New York, 2004.
  • [29] R. Levy and J. Shapiro, The zero-divisor graph of von Neumann regular rings, Comm. Algebra 30(2), 745-750, 2002.
  • [30] N. Mahdou and A.R. Hassani, On strong (A)-rings, Mediterr. J. Math. 9(2), 393-402, 2012.
  • [31] P.M. Rad, S. Yassemi, S. Ghalandarzadeh and P. Safari, Diameter and girth of Torsion Graph, An. tiin. Univ. Ovidius Constanta 22(3), 127-136, 2014.
  • [32] P.M. Rad, Planar Torsion Graph of Modules, Filomat 30(2), 367-372, 2016.
  • [33] H. Mostafanasab and A.Y. Darani, 2-Irreducible and Strongly 2-Irreducible ideals of commutative rings, Miskolc Math. Notes 17(1), 441-455, 2016.
  • [34] M. Nazim and N. Rehman, On the essential annihilating-ideal graph of commutative rings, Ars Math. Contemp. 22(3), (16 pages), 2022.
  • [35] M. Nazim, N.U.Rehman and K. Selvakumar, On the genus of annihilator intersection graph of commutative rings, Alg. Struc. Appl. 11(1), 25-36, 2024.
  • [36] M.J. Nikmehr and S. Khojasteh, On the nilpotent graph of a ring, Turk. J. Math. 37(4), 553-559, 2013.
  • [37] S. Payrovi and S. Babaei, The compressed annihilator graph of a commutative ring, Indian J. Pure Appl. Math. 49(1), 177-186, 2018.
  • [38] S. Payrovi, S. Babaei and E.S. Sevim, On the compressed essential graph of a commutative ring, Bull. Belg. Math. Soc. Simon Stevin 26(3), 421-429, 2019.
  • [39] S.P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31(9), 4425-4443, 2003.
  • [40] K.H. Rosen, Discrete Mathematics and Its Applications, 7th ed. McGraw-Hill, 2011.
  • [41] R.Y. Sharp, Steps in commutative algebra (No. 51), Cambridge university press, 2000.
  • [42] J. Von Neumann, On regular rings, Proc. Natl. Acad. Sci. USA 22(12), 707-713, 1936.
  • [43] E. Yaraneri, Intersection graph of a module, J. Algebra Appl. 12(05), 1250218, 2013.

Year 2025, Volume: 54 Issue: 6, 2182 - 2194, 30.12.2025
https://doi.org/10.15672/hujms.1485903

Abstract

References

  • [1] S. Akbaria, H.A. Tavallaeeb and S. Khalashi Ghezelahmad, Intersection graph of submodules of a module, J. Algebra Appl. 10, 1-8, 2011.
  • [2] D.D. Anderson, T. Arabaci, Ü. Tekir and S. Koç, On S-multiplication modules, Comm. Algebra 48(8), 3398-3407, 2020.
  • [3] D.F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320(7), 2706-2719, 2008.
  • [4] D.D. Anderson and S. Chun, The set of torsion elements of a module, Comm. Algebra 42(4), 1835-1843, 2014.
  • [5] D.D. Anderson and S. Chun, Annihilator conditions on modules over commutative rings, J. Algebra Appl. 16(08), 1750143, 2017.
  • [6] D.D. Anderson and S. Chun, McCoy modules and related modules over commutative rings, Comm. Algebra 45(6), 2593-2601, 2017.
  • [7] F.W. Anderson and K.R. Fuller, Rings and categories of modules (Vol. 13), Springer Science & Business Media, 2012.
  • [8] A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra 42(1), 108-121, 2014.
  • [9] A. Barnard, Multiplication modules, J. Algebra. 71(1), 174-178, 1981.
  • [10] I. Beck, Coloring of commutative rings, J. Algebra 116(1), 208-226, 1988.
  • [11] M. Behboodi, Zero divisor graphs for modules over commutative rings, J. Commut. Algebra 4(2), 175-197, 2012.
  • [12] D. Bennis, J. Mikram and F. Taraza, On the extended zero divisor graph of commutative rings, Turk. J. Math. 40(2), 376-388, 2016.
  • [13] I. Chakrabarty, S. Ghosh, T.K. Mukherjee and M.K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309, 5381-5392, 2009.
  • [14] G. Chartrand and P. Zhang, A First Course in Graph Theory, Dover Publications, New York, 2012.
  • [15] A.Y. Darani, Notes on annihilator conditions in modules over commutative rings, An. Stinnt. Univ. Ovidius Constanta 18, 59-72, 2010.
  • [16] R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
  • [17] M. Evans, On commutative PP rings, Pacific J. Math. 41(3), 687-697, 1972.
  • [18] Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. Algebra 16(4), 755-779, 1988.
  • [19] Y. El-Khabchi, E.M. Bouba and S. Koç, On the global powerful alliance number of zero-divisor graphs of finite commutative rings, J. Algebra Appl. 24(3), 2550089, 2025.
  • [20] J.A. Huckaba, Commutative rings with zero divisors, Marcel Dekker Inc., 1988.
  • [21] C. Jayaram and Ü. Tekir, von Neumann regular modules, Comm. Algebra 46(5), 2205-2217, 2018.
  • [22] C. Jayaram, Ü. Tekir and S. Koç, On Quasi regular modules and trivial extension, Hacettepe J. Math. Stat. 50(1), 120-134, 2021.
  • [23] C. Jayaram, Ü. Tekir and S. Koç, On Baer modules, Rev. Un. Mat. Argentina 63(1), 109-128, 2022
  • [24] C. Jayaram, Ü. Tekir, S. Koç and S. Çeken, On normal modules, Comm. Algebra 51(4), 1479-1491, 2023.
  • [25] M.L. Knox, R. Levy, W.W. McGovern and J. Shapiro, Generalizations of complemented rings with applications to rings of functions, J. Algebra Appl. 8(1), 17-40, 2009.
  • [26] S. Koç, On Strongly $\pi$-regular Modules, Sakarya Uni. J. Science 24(4), 675-684, 2020.
  • [27] M.D. Larsen and P.J. MacCarthy, Multiplicative theory of ideals, New York: Academic Press, 1971.
  • [28] T.K. Lee and Y. Zhou, Reduced modules, Rings, modules, algebras and abelian groups 236, Lecture Notes in Pure and Appl. Mathematics, pp. 365-377, Marcel Dekker, New York, 2004.
  • [29] R. Levy and J. Shapiro, The zero-divisor graph of von Neumann regular rings, Comm. Algebra 30(2), 745-750, 2002.
  • [30] N. Mahdou and A.R. Hassani, On strong (A)-rings, Mediterr. J. Math. 9(2), 393-402, 2012.
  • [31] P.M. Rad, S. Yassemi, S. Ghalandarzadeh and P. Safari, Diameter and girth of Torsion Graph, An. tiin. Univ. Ovidius Constanta 22(3), 127-136, 2014.
  • [32] P.M. Rad, Planar Torsion Graph of Modules, Filomat 30(2), 367-372, 2016.
  • [33] H. Mostafanasab and A.Y. Darani, 2-Irreducible and Strongly 2-Irreducible ideals of commutative rings, Miskolc Math. Notes 17(1), 441-455, 2016.
  • [34] M. Nazim and N. Rehman, On the essential annihilating-ideal graph of commutative rings, Ars Math. Contemp. 22(3), (16 pages), 2022.
  • [35] M. Nazim, N.U.Rehman and K. Selvakumar, On the genus of annihilator intersection graph of commutative rings, Alg. Struc. Appl. 11(1), 25-36, 2024.
  • [36] M.J. Nikmehr and S. Khojasteh, On the nilpotent graph of a ring, Turk. J. Math. 37(4), 553-559, 2013.
  • [37] S. Payrovi and S. Babaei, The compressed annihilator graph of a commutative ring, Indian J. Pure Appl. Math. 49(1), 177-186, 2018.
  • [38] S. Payrovi, S. Babaei and E.S. Sevim, On the compressed essential graph of a commutative ring, Bull. Belg. Math. Soc. Simon Stevin 26(3), 421-429, 2019.
  • [39] S.P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31(9), 4425-4443, 2003.
  • [40] K.H. Rosen, Discrete Mathematics and Its Applications, 7th ed. McGraw-Hill, 2011.
  • [41] R.Y. Sharp, Steps in commutative algebra (No. 51), Cambridge university press, 2000.
  • [42] J. Von Neumann, On regular rings, Proc. Natl. Acad. Sci. USA 22(12), 707-713, 1936.
  • [43] E. Yaraneri, Intersection graph of a module, J. Algebra Appl. 12(05), 1250218, 2013.
There are 43 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Seçil Çeken 0000-0002-7578-9320

Osama A. Naji 0000-0002-6498-7620

Ünsal Tekir 0000-0003-0739-1449

Suat Koç 0000-0003-1622-786X

Submission Date May 17, 2024
Acceptance Date February 24, 2025
Early Pub Date June 24, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 54 Issue: 6

Cite

APA Çeken, S., Naji, O. A., Tekir, Ü., Koç, S. (2025). Zero intersection graph of annihilator ideals of modules. Hacettepe Journal of Mathematics and Statistics, 54(6), 2182-2194. https://doi.org/10.15672/hujms.1485903
AMA Çeken S, Naji OA, Tekir Ü, Koç S. Zero intersection graph of annihilator ideals of modules. Hacettepe Journal of Mathematics and Statistics. December 2025;54(6):2182-2194. doi:10.15672/hujms.1485903
Chicago Çeken, Seçil, Osama A. Naji, Ünsal Tekir, and Suat Koç. “Zero Intersection Graph of Annihilator Ideals of Modules”. Hacettepe Journal of Mathematics and Statistics 54, no. 6 (December 2025): 2182-94. https://doi.org/10.15672/hujms.1485903.
EndNote Çeken S, Naji OA, Tekir Ü, Koç S (December 1, 2025) Zero intersection graph of annihilator ideals of modules. Hacettepe Journal of Mathematics and Statistics 54 6 2182–2194.
IEEE S. Çeken, O. A. Naji, Ü. Tekir, and S. Koç, “Zero intersection graph of annihilator ideals of modules”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, pp. 2182–2194, 2025, doi: 10.15672/hujms.1485903.
ISNAD Çeken, Seçil et al. “Zero Intersection Graph of Annihilator Ideals of Modules”. Hacettepe Journal of Mathematics and Statistics 54/6 (December2025), 2182-2194. https://doi.org/10.15672/hujms.1485903.
JAMA Çeken S, Naji OA, Tekir Ü, Koç S. Zero intersection graph of annihilator ideals of modules. Hacettepe Journal of Mathematics and Statistics. 2025;54:2182–2194.
MLA Çeken, Seçil et al. “Zero Intersection Graph of Annihilator Ideals of Modules”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, 2025, pp. 2182-94, doi:10.15672/hujms.1485903.
Vancouver Çeken S, Naji OA, Tekir Ü, Koç S. Zero intersection graph of annihilator ideals of modules. Hacettepe Journal of Mathematics and Statistics. 2025;54(6):2182-94.