Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 6, 2168 - 2181, 30.12.2025
https://doi.org/10.15672/hujms.1605434

Abstract

References

  • [1] F. Anceschi, A. Barbagallo and S. G. Lo Bianco, Inverse tensor variational inequalities and applications, J. Optim. Theory Appl. 196, 570–589, 2023.
  • [2] A. Barbagallo and P. Mauro, Inverse variational inequality approach and applications, Numer. Funct. Anal. Optim. 35, 851–867, 2014.
  • [3] L. Cao, H. Kong and S. D. Zeng, On the well-posedness of the generalized split quasiinverse variational inequalities, J. Nonlinear Sci. Appl. 9, 5497–5509, 2016.
  • [4] G. P. Crespi, A. Guerraggio and M. Rocca, Well posedness in vector optimization problems and vector variational inequalities, J. Optim. Theory Appl. 132, 213–226, 2007.
  • [5] H. He, C. Ling and H. K. Xu, A relaxed projection method for split variational inequalities, J. Optim. Theory Appl. 166, 213–233, 2015.
  • [6] R. Hu and Y. P. Fang, Levitin–Polyak well-posedness by perturbations of inverse variational inequalities, Optim. Lett. 7, 343–359, 2013.
  • [7] R. Hu and Y. P. Fang, Well-posedness of the split inverse variational inequality problem, Bull. Malays. Math. Sci. Soc. 40, 1733–1744, 2017.
  • [8] N. V. Hung, Generalized Levitin–Polyak well-posedness for controlled systems of FMQHI-fuzzy mixed quasi-hemivariational inequalities of Minty type, J. Comput. Appl. Math. 386, 113263, 2021.
  • [9] N. V. Hung, V. M. Tam and D. Baleanu, Regularized gap functions and error bounds for split mixed vector quasivariational inequality problems, Math. Methods Appl. Sci. 43, 4614–4626, 2020.
  • [10] N. V. Hung, V. M. Tam and D. O’Regan, Error bound analysis for split weak vector mixed quasi-variational inequality problems in fuzzy environment, Appl. Anal. 102, 1874–1888, 2023.
  • [11] C. Kanzow and D. Steck, Quasi-variational inequalities in Banach spaces: theory and augmented Lagrangian methods, SIAM J. Optim. 29, 3174–3200, 2019.
  • [12] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, SIAM, 2000.
  • [13] K. Kuratowski, Topology, New edition, revised and augmented, Academic Press, 1966.
  • [14] M. B. Lignola, Well-posedness and L-well-posedness for quasivariational inequalities, J. Optim. Theory Appl. 128, 119–138, 2006.
  • [15] M. B. Lignola and J. Morgan, Vector quasi-variational inequalities: approximate solutions and well-posedness, J. Convex Anal. 13, 373, 2006.
  • [16] M. A. Noor, General variational inequalities, Appl. Math. Lett. 1, 119–122, 1988.
  • [17] M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput. 152, 199–277, 2004.
  • [18] M. A. Noor, Differentiable non-convex functions and general variational inequalities, Appl. Math. Comput. 199, 623–630, 2008.
  • [19] V. M. Tam, N. V. Hung, Z. Liu and J. C. Yao, Levitin–Polyak well-posedness by perturbations for the split hemivariational inequality problem on Hadamard manifolds, J. Optim. Theory Appl. 195, 684–706, 2022.
  • [20] Y. Wang, Z. H. Huang and L. Qi, Global uniqueness and solvability of tensor variational inequalities, J. Optim. Theory Appl. 177, 137–152, 2018.

Well-posedness of a class generalized split quasi-inverse tensor variational inequalities

Year 2025, Volume: 54 Issue: 6, 2168 - 2181, 30.12.2025
https://doi.org/10.15672/hujms.1605434

Abstract

This paper aims to study a generalized split quasi-inverse tensor variational inequality (GSQITVI) in tensor spaces. Building on the concept of well-posedness, we establish several metric-based features that provide necessary and sufficient conditions for the well-posedness of the GSQITVI. By utilizing the measure of non-compactness and the correlation theorem, we also derive results concerning the well-posedness of the problem. These findings emphasize the key properties of the GSQITVI and offer an analysis of the convergence of its solutions.

References

  • [1] F. Anceschi, A. Barbagallo and S. G. Lo Bianco, Inverse tensor variational inequalities and applications, J. Optim. Theory Appl. 196, 570–589, 2023.
  • [2] A. Barbagallo and P. Mauro, Inverse variational inequality approach and applications, Numer. Funct. Anal. Optim. 35, 851–867, 2014.
  • [3] L. Cao, H. Kong and S. D. Zeng, On the well-posedness of the generalized split quasiinverse variational inequalities, J. Nonlinear Sci. Appl. 9, 5497–5509, 2016.
  • [4] G. P. Crespi, A. Guerraggio and M. Rocca, Well posedness in vector optimization problems and vector variational inequalities, J. Optim. Theory Appl. 132, 213–226, 2007.
  • [5] H. He, C. Ling and H. K. Xu, A relaxed projection method for split variational inequalities, J. Optim. Theory Appl. 166, 213–233, 2015.
  • [6] R. Hu and Y. P. Fang, Levitin–Polyak well-posedness by perturbations of inverse variational inequalities, Optim. Lett. 7, 343–359, 2013.
  • [7] R. Hu and Y. P. Fang, Well-posedness of the split inverse variational inequality problem, Bull. Malays. Math. Sci. Soc. 40, 1733–1744, 2017.
  • [8] N. V. Hung, Generalized Levitin–Polyak well-posedness for controlled systems of FMQHI-fuzzy mixed quasi-hemivariational inequalities of Minty type, J. Comput. Appl. Math. 386, 113263, 2021.
  • [9] N. V. Hung, V. M. Tam and D. Baleanu, Regularized gap functions and error bounds for split mixed vector quasivariational inequality problems, Math. Methods Appl. Sci. 43, 4614–4626, 2020.
  • [10] N. V. Hung, V. M. Tam and D. O’Regan, Error bound analysis for split weak vector mixed quasi-variational inequality problems in fuzzy environment, Appl. Anal. 102, 1874–1888, 2023.
  • [11] C. Kanzow and D. Steck, Quasi-variational inequalities in Banach spaces: theory and augmented Lagrangian methods, SIAM J. Optim. 29, 3174–3200, 2019.
  • [12] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, SIAM, 2000.
  • [13] K. Kuratowski, Topology, New edition, revised and augmented, Academic Press, 1966.
  • [14] M. B. Lignola, Well-posedness and L-well-posedness for quasivariational inequalities, J. Optim. Theory Appl. 128, 119–138, 2006.
  • [15] M. B. Lignola and J. Morgan, Vector quasi-variational inequalities: approximate solutions and well-posedness, J. Convex Anal. 13, 373, 2006.
  • [16] M. A. Noor, General variational inequalities, Appl. Math. Lett. 1, 119–122, 1988.
  • [17] M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput. 152, 199–277, 2004.
  • [18] M. A. Noor, Differentiable non-convex functions and general variational inequalities, Appl. Math. Comput. 199, 623–630, 2008.
  • [19] V. M. Tam, N. V. Hung, Z. Liu and J. C. Yao, Levitin–Polyak well-posedness by perturbations for the split hemivariational inequality problem on Hadamard manifolds, J. Optim. Theory Appl. 195, 684–706, 2022.
  • [20] Y. Wang, Z. H. Huang and L. Qi, Global uniqueness and solvability of tensor variational inequalities, J. Optim. Theory Appl. 177, 137–152, 2018.
There are 20 citations in total.

Details

Primary Language English
Subjects Partial Differential Equations, Calculus of Variations, Mathematical Aspects of Systems Theory and Control Theory
Journal Section Research Article
Authors

Qing Nie 0009-0003-2410-9588

Vo Minh Tam 0000-0002-3959-5449

Boling Chen 0000-0002-1944-7975

Submission Date December 22, 2024
Acceptance Date February 23, 2025
Early Pub Date April 11, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 54 Issue: 6

Cite

APA Nie, Q., Tam, V. M., & Chen, B. (2025). Well-posedness of a class generalized split quasi-inverse tensor variational inequalities. Hacettepe Journal of Mathematics and Statistics, 54(6), 2168-2181. https://doi.org/10.15672/hujms.1605434
AMA Nie Q, Tam VM, Chen B. Well-posedness of a class generalized split quasi-inverse tensor variational inequalities. Hacettepe Journal of Mathematics and Statistics. December 2025;54(6):2168-2181. doi:10.15672/hujms.1605434
Chicago Nie, Qing, Vo Minh Tam, and Boling Chen. “Well-Posedness of a Class Generalized Split Quasi-Inverse Tensor Variational Inequalities”. Hacettepe Journal of Mathematics and Statistics 54, no. 6 (December 2025): 2168-81. https://doi.org/10.15672/hujms.1605434.
EndNote Nie Q, Tam VM, Chen B (December 1, 2025) Well-posedness of a class generalized split quasi-inverse tensor variational inequalities. Hacettepe Journal of Mathematics and Statistics 54 6 2168–2181.
IEEE Q. Nie, V. M. Tam, and B. Chen, “Well-posedness of a class generalized split quasi-inverse tensor variational inequalities”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, pp. 2168–2181, 2025, doi: 10.15672/hujms.1605434.
ISNAD Nie, Qing et al. “Well-Posedness of a Class Generalized Split Quasi-Inverse Tensor Variational Inequalities”. Hacettepe Journal of Mathematics and Statistics 54/6 (December2025), 2168-2181. https://doi.org/10.15672/hujms.1605434.
JAMA Nie Q, Tam VM, Chen B. Well-posedness of a class generalized split quasi-inverse tensor variational inequalities. Hacettepe Journal of Mathematics and Statistics. 2025;54:2168–2181.
MLA Nie, Qing et al. “Well-Posedness of a Class Generalized Split Quasi-Inverse Tensor Variational Inequalities”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, 2025, pp. 2168-81, doi:10.15672/hujms.1605434.
Vancouver Nie Q, Tam VM, Chen B. Well-posedness of a class generalized split quasi-inverse tensor variational inequalities. Hacettepe Journal of Mathematics and Statistics. 2025;54(6):2168-81.