Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 6, 2335 - 2349, 30.12.2025
https://doi.org/10.15672/hujms.1610013

Abstract

Project Number

This work is supported by National Natural Science Foundation of China (No. 12171220)

References

  • [1] J. Adámek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories, Wiley- Interscience, 1990.
  • [2] T. M. G. Ahsanullah and G. Jäger, Quantale-Valued Generalizations of Approach Groups, New Mathematics and Natural Computation 15 (1), 1-30, 2019.
  • [3] J. Al-Mufarrij, T. M. G. Ahsanullah, On the category of fixed basis frame valued topological groups, Fuzzy Sets and Systems 159, 2529-2551, 2008.
  • [4] A. Arhangel’skii and M. Tkachenko, Topological Groups and Related Structures, Atlantis Press World Scientific, 2008.
  • [5] F. Bayoumi, On initial and final L-topological groups, Fuzzy Sets and Systems 156, 43-54, 2005.
  • [6] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove and D.S. Scott, Continuous Lattices and Domains, Cambridge University Press, 2003.
  • [7] X.C. Han and B. Pang, The categories of L-convex spaces and L-convergence spaces: Extensionality and productivity of quotient maps, Hacettepe Journal of Mathematics and Statistics, DOI:10.15672/hujms.1543634.
  • [8] U. Höhle and A. ˘Sostak, Axiomatic foundations of fixed-basis fuzzy topology, in: U. Höhle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, The Handbooks of Fuzzy Sets Series 3, 123-273, Kluwer Academic Publishers, Boston, Dordrecht, London, 1999.
  • [9] Q. Jin and L.Q. Li, On the embedding of convex spaces in stratified L-convex spaces, SpringerPlus 5, 1610, 2016.
  • [10] Q. Jin and L.Q. Li, Stratified lattice-valued neighborhood tower group, Quaestiones Mathematicae 41 (6), 847-861, 2018.
  • [11] L.Q. Li, On the category of enriched (L,M)-convex spaces, Journal of Intelligent & Fuzzy Systems 33 (6), 3209-3216, 2017.
  • [12] L.Q. Li and Q. Jin, A category of complete residuated lattice-value neighborhood groups, Fuzzy Sets and Systems 442, 53-75, 2022.
  • [13] L.Q. Li and Q. Jin, Comment on L-convergence spaces via L-ordered co-Scott closed sets, Iranian Journal of Fuzzy Systems 22 (1), 131-134, 2025.
  • [14] H.Y. Li and K. Wang, L-ordered neighborhood systems of stratified L-concave structures, Journal of Nonlinear and Convex Analysis 21 (12), 2783-2793, 2020.
  • [15] M.Y. Liu, Y.L. Yue and X.W. Wei, Frame-valued Scott open set monad and its algebras, Fuzzy Sets and Systems 460, 5271, 2023.
  • [16] Y. Maruyama, Lattice-valued fuzzy convex geometry, RIMS Kokyuroku 164, 22-37, 2009.
  • [17] B. Pang, An axiomatic approach to bases and subbases in L-convex spaces and their applications, Fuzzy Sets and Systems 369, 40-56, 2019.
  • [18] B. Pang, Fuzzy convexities via overlap functions, IEEE Transactions on Fuzzy Systems 31 (4), 1071-1082, 2023.
  • [19] B. Pang, Quantale-valued convex structures as lax algebra, Fuzzy Sets and Systems 473, 108737, 2023.
  • [20] O.R. Sayed, E. EL-Sanousy and Y.H. Sayed, On (L,M)-fuzzy convex structures, Filomat 33 (13), 4151-4163, 2019.
  • [21] C. Shen and F.G Shi, Characterizations of L-convex spaces via domain theory, Fuzzy Sets and Systems 380, 44-63, 2020.
  • [22] F.G. Shi and Z.Y. Xiu, A new approach to the fuzzification of convex structures, Journal of Applied Mathematics 2014 (1), 249183, 2014.
  • [23] F.G. Shi and Z.Y. Xiu, (L,M)-fuzzy convex structures, Journal of Nonlinear Sciences and Applications, 10 (7), 3655-3669, 2017.
  • [24] S.H. Su, Q.G Li and F.Y. Liu, Characterizations of L-order L-convex spaces, Iranian Journal of Fuzzy Systems 19 (5), 95-109, 2022.
  • [25] M.L.J. Van de Vel, Theory of convex structures, North-Holland, 1993.
  • [26] L. Wang and J.J. Xu, The L-fuzzy vector subspace degrees and its induced convex structure, Computational and Applied Mathematics 43 (3), 131, 2024.
  • [27] X.Y. Wu and Y.W. Huang, L-convex convergence relation and L-convex idealconvergence structure, Iranian Journal of Fuzzy Systems 21 (5), 31-49, 2024.
  • [28] X.Y.Wu and E.Q. Li, Characterizations of L-concavities and L-convexities via derived relations, Hacettepe Journal of Mathematics and Statistics 52 (4), 876-895, 2023.
  • [29] G.J. Wu and W. Yao, Sober L-convex spaces and L-join-semilattices, Iranian Journal of Fuzzy Systems 21 (4), 163-177, 2024.
  • [30] C.C. Xia, A categorical isomorphism between injective balanced L-S0-convex spaces and fuzzy frames, Fuzzy Sets and Systems 437, 114-126, 2022.
  • [31] Z.Y. Xiu, Q.H. Li and B. Pang, Fuzzy convergence structures in the framework of L-convex spaces,ăIranian Journal of Fuzzy Systems 17 (4), 139-150, 2020.
  • [32] L. Zhang and B. Pang, Strong L-concave structures and L-convergence structures, Journal of Nonlinear and Convex Analysis 21 (12), 2759-2769, 2020.
  • [33] S.Y. Zhang and C.H. Yan, L-fuzzifying topological groups, Iranian Journal of Fuzzy Systems 9 (4), 115-132, 2012.
  • [34] H. Zhao, X. Hu, O. R. Sayed, E. El-Sanousy and Y. H. Ragheb Sayed, Concave (L,M)-fuzzy interior operators and (L,M)-fuzzy hull operators, Computational and Applied Mathematics 40 (8), 301, 2021.
  • [35] H. Zhao, L.Y. Jia and G.X. Chen, Convex (L,M)-fuzzy remote neighborhood operators, Kybernetika 60 (2), 150-171, 2024.
  • [36] H. Zhao, S.G. Li and G.X. Chen, (L,M)-fuzzy topological groups, Journal of Intelligent and Fuzzy Systems 26 (3), 1517-1526, 2014.

Stratified $L$-convex groups

Year 2025, Volume: 54 Issue: 6, 2335 - 2349, 30.12.2025
https://doi.org/10.15672/hujms.1610013

Abstract

This paper investigates a novel structure of stratified $L$-convex groups, defined as groups possessing stratified $L$-convex structures, in which the group operations are $L$-convexity-preserving mappings. It is verified that stratified $L$-convex groups serve as objects, while $L$-convexity-preserving group homomorphisms serve as morphisms, together forming a concrete category, denoted as SLCG. As a specific instance of SLCG (i.e., when $L$=2), the category of convex groups, denoted as CG, is also defined. We show that CG can be embedded within SLCG as a reflective subcategory. In addition, we demonstrate that SLCG possesses well-defined characterizations, localization properties, and initial and final structures, establishing it as a topological category over groups.

Project Number

This work is supported by National Natural Science Foundation of China (No. 12171220)

References

  • [1] J. Adámek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories, Wiley- Interscience, 1990.
  • [2] T. M. G. Ahsanullah and G. Jäger, Quantale-Valued Generalizations of Approach Groups, New Mathematics and Natural Computation 15 (1), 1-30, 2019.
  • [3] J. Al-Mufarrij, T. M. G. Ahsanullah, On the category of fixed basis frame valued topological groups, Fuzzy Sets and Systems 159, 2529-2551, 2008.
  • [4] A. Arhangel’skii and M. Tkachenko, Topological Groups and Related Structures, Atlantis Press World Scientific, 2008.
  • [5] F. Bayoumi, On initial and final L-topological groups, Fuzzy Sets and Systems 156, 43-54, 2005.
  • [6] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove and D.S. Scott, Continuous Lattices and Domains, Cambridge University Press, 2003.
  • [7] X.C. Han and B. Pang, The categories of L-convex spaces and L-convergence spaces: Extensionality and productivity of quotient maps, Hacettepe Journal of Mathematics and Statistics, DOI:10.15672/hujms.1543634.
  • [8] U. Höhle and A. ˘Sostak, Axiomatic foundations of fixed-basis fuzzy topology, in: U. Höhle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, The Handbooks of Fuzzy Sets Series 3, 123-273, Kluwer Academic Publishers, Boston, Dordrecht, London, 1999.
  • [9] Q. Jin and L.Q. Li, On the embedding of convex spaces in stratified L-convex spaces, SpringerPlus 5, 1610, 2016.
  • [10] Q. Jin and L.Q. Li, Stratified lattice-valued neighborhood tower group, Quaestiones Mathematicae 41 (6), 847-861, 2018.
  • [11] L.Q. Li, On the category of enriched (L,M)-convex spaces, Journal of Intelligent & Fuzzy Systems 33 (6), 3209-3216, 2017.
  • [12] L.Q. Li and Q. Jin, A category of complete residuated lattice-value neighborhood groups, Fuzzy Sets and Systems 442, 53-75, 2022.
  • [13] L.Q. Li and Q. Jin, Comment on L-convergence spaces via L-ordered co-Scott closed sets, Iranian Journal of Fuzzy Systems 22 (1), 131-134, 2025.
  • [14] H.Y. Li and K. Wang, L-ordered neighborhood systems of stratified L-concave structures, Journal of Nonlinear and Convex Analysis 21 (12), 2783-2793, 2020.
  • [15] M.Y. Liu, Y.L. Yue and X.W. Wei, Frame-valued Scott open set monad and its algebras, Fuzzy Sets and Systems 460, 5271, 2023.
  • [16] Y. Maruyama, Lattice-valued fuzzy convex geometry, RIMS Kokyuroku 164, 22-37, 2009.
  • [17] B. Pang, An axiomatic approach to bases and subbases in L-convex spaces and their applications, Fuzzy Sets and Systems 369, 40-56, 2019.
  • [18] B. Pang, Fuzzy convexities via overlap functions, IEEE Transactions on Fuzzy Systems 31 (4), 1071-1082, 2023.
  • [19] B. Pang, Quantale-valued convex structures as lax algebra, Fuzzy Sets and Systems 473, 108737, 2023.
  • [20] O.R. Sayed, E. EL-Sanousy and Y.H. Sayed, On (L,M)-fuzzy convex structures, Filomat 33 (13), 4151-4163, 2019.
  • [21] C. Shen and F.G Shi, Characterizations of L-convex spaces via domain theory, Fuzzy Sets and Systems 380, 44-63, 2020.
  • [22] F.G. Shi and Z.Y. Xiu, A new approach to the fuzzification of convex structures, Journal of Applied Mathematics 2014 (1), 249183, 2014.
  • [23] F.G. Shi and Z.Y. Xiu, (L,M)-fuzzy convex structures, Journal of Nonlinear Sciences and Applications, 10 (7), 3655-3669, 2017.
  • [24] S.H. Su, Q.G Li and F.Y. Liu, Characterizations of L-order L-convex spaces, Iranian Journal of Fuzzy Systems 19 (5), 95-109, 2022.
  • [25] M.L.J. Van de Vel, Theory of convex structures, North-Holland, 1993.
  • [26] L. Wang and J.J. Xu, The L-fuzzy vector subspace degrees and its induced convex structure, Computational and Applied Mathematics 43 (3), 131, 2024.
  • [27] X.Y. Wu and Y.W. Huang, L-convex convergence relation and L-convex idealconvergence structure, Iranian Journal of Fuzzy Systems 21 (5), 31-49, 2024.
  • [28] X.Y.Wu and E.Q. Li, Characterizations of L-concavities and L-convexities via derived relations, Hacettepe Journal of Mathematics and Statistics 52 (4), 876-895, 2023.
  • [29] G.J. Wu and W. Yao, Sober L-convex spaces and L-join-semilattices, Iranian Journal of Fuzzy Systems 21 (4), 163-177, 2024.
  • [30] C.C. Xia, A categorical isomorphism between injective balanced L-S0-convex spaces and fuzzy frames, Fuzzy Sets and Systems 437, 114-126, 2022.
  • [31] Z.Y. Xiu, Q.H. Li and B. Pang, Fuzzy convergence structures in the framework of L-convex spaces,ăIranian Journal of Fuzzy Systems 17 (4), 139-150, 2020.
  • [32] L. Zhang and B. Pang, Strong L-concave structures and L-convergence structures, Journal of Nonlinear and Convex Analysis 21 (12), 2759-2769, 2020.
  • [33] S.Y. Zhang and C.H. Yan, L-fuzzifying topological groups, Iranian Journal of Fuzzy Systems 9 (4), 115-132, 2012.
  • [34] H. Zhao, X. Hu, O. R. Sayed, E. El-Sanousy and Y. H. Ragheb Sayed, Concave (L,M)-fuzzy interior operators and (L,M)-fuzzy hull operators, Computational and Applied Mathematics 40 (8), 301, 2021.
  • [35] H. Zhao, L.Y. Jia and G.X. Chen, Convex (L,M)-fuzzy remote neighborhood operators, Kybernetika 60 (2), 150-171, 2024.
  • [36] H. Zhao, S.G. Li and G.X. Chen, (L,M)-fuzzy topological groups, Journal of Intelligent and Fuzzy Systems 26 (3), 1517-1526, 2014.
There are 36 citations in total.

Details

Primary Language English
Subjects Topology
Journal Section Research Article
Authors

Lingqiang Li 0000-0002-8666-1250

Qiu Jin 0000-0001-7939-1013

Project Number This work is supported by National Natural Science Foundation of China (No. 12171220)
Submission Date January 4, 2025
Acceptance Date May 9, 2025
Early Pub Date June 24, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 54 Issue: 6

Cite

APA Li, L., & Jin, Q. (2025). Stratified $L$-convex groups. Hacettepe Journal of Mathematics and Statistics, 54(6), 2335-2349. https://doi.org/10.15672/hujms.1610013
AMA Li L, Jin Q. Stratified $L$-convex groups. Hacettepe Journal of Mathematics and Statistics. December 2025;54(6):2335-2349. doi:10.15672/hujms.1610013
Chicago Li, Lingqiang, and Qiu Jin. “Stratified $L$-Convex Groups”. Hacettepe Journal of Mathematics and Statistics 54, no. 6 (December 2025): 2335-49. https://doi.org/10.15672/hujms.1610013.
EndNote Li L, Jin Q (December 1, 2025) Stratified $L$-convex groups. Hacettepe Journal of Mathematics and Statistics 54 6 2335–2349.
IEEE L. Li and Q. Jin, “Stratified $L$-convex groups”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, pp. 2335–2349, 2025, doi: 10.15672/hujms.1610013.
ISNAD Li, Lingqiang - Jin, Qiu. “Stratified $L$-Convex Groups”. Hacettepe Journal of Mathematics and Statistics 54/6 (December2025), 2335-2349. https://doi.org/10.15672/hujms.1610013.
JAMA Li L, Jin Q. Stratified $L$-convex groups. Hacettepe Journal of Mathematics and Statistics. 2025;54:2335–2349.
MLA Li, Lingqiang and Qiu Jin. “Stratified $L$-Convex Groups”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, 2025, pp. 2335-49, doi:10.15672/hujms.1610013.
Vancouver Li L, Jin Q. Stratified $L$-convex groups. Hacettepe Journal of Mathematics and Statistics. 2025;54(6):2335-49.