Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 6, 2350 - 2362, 30.12.2025
https://doi.org/10.15672/hujms.1701976

Abstract

Project Number

This work is supported by the National Science Foundation of China (12171203), and the Fundamental Research Funds for the Central Universities (23JNQMX21)

References

  • [1] A. Alfons, C. Croux and S. Gelper, Sparse least trimmed squares regression for analyzing high-dimensional large data sets, Ann. Appl. Stat., 226-248, 2013.
  • [2] O. Arslan, Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression, Comput. Stat. Data. An. 56 (6), 1952-1965, 2012.
  • [3] K. Boudt, P.J. Rousseeuw, S. Vanduffel and T. Verdonck, The minimum regularized covariance determinant estimator, Stat. Comput. 30 (1), 113-128, 2020.
  • [4] J. Bradic, J. Fan and W. Wang, Penalized composite quasi-likelihood for ultrahigh dimensional variable selection, J. R. Stat. Soc. Ser. B Stat. Methodol. 73 (3), 325- 349, 2011.
  • [5] P. Bühlmann, M. Kalisch and M.H. Maathuis, Variable selection in high-dimensional linear models: partially faithful distributions and the PC-simple algorithm, Biometrika 97 (2), 261-278, 2010.
  • [6] X. Chen, Z.J. Wang and M.J. McKeown, Asymptotic analysis of robust LASSOs in the presence of noise with large variance, IEEE Trans. Inf. Theory 56 (10), 5131-5149, 2010.
  • [7] H. Cho and P. Fryzlewicz, High dimensional variable selection via tilting, J. R. Stat. Soc. Ser. B Stat. Methodol. 74 (3), 593-622, 2012.
  • [8] J. Fan, Y. Fan and E. Barut, Adaptive robust variable selection, Ann. Stat. 42 (1), 324, 2014.
  • [9] J. Fan and R. Li, Nonconcave penalized likelihood with NP-dimensionality, IEEE. Trans. Inf. Theory. 57 (8), 5467-5484, 2011.
  • [10] J. Fan and R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, J. Amer. Stat. Assoc. 96 (456), 1348-1360, 2001.
  • [11] Y. Jiang, Y. Wang, J. Jiang, B. Xie, J. Liao and W. Liao, Outlier detection and robust variable selection via the penalized weighted LAD-LASSO method, J. Appl. Stat. 48 (2), 234-246, 2021.
  • [12] Y. Jiang, Y.G. Wang, L. Fu and X. Wang, Robust estimation using modified Huber’s functions with new tails, Technometrics 61 (1), 111-122, 2019.
  • [13] B.A. Johnson and L. Peng, Rank-based variable selection, J. Nonparam. Stat. 20 (3), 241-252, 2008.
  • [14] R.J. Karunamuni, L. Kong and W. Tu, Efficient robust doubly adaptive regularized regression with applications, Stat. Methods Med. Res. 28 (7), 2210-2226, 2019.
  • [15] C. Leng, Variable selection and coefficient estimation via regularized rank regression, Stat. Sin., 167-181, 2010.
  • [16] N. Li, Efficient sparse portfolios based on composite quantile regression for highdimensional index tracking, J. Stat. Comput. Simul. 90 (8), 1466-1478, 2020.
  • [17] G. Li, H. Peng and L. Zhu, Nonconcave penalized M-estimation with a diverging number of parameters, Stat. Sin., 391-419, 2011.
  • [18] P. Rousseeuw and K. Van Driessen, A fast algorithm for the minimum covariance determinant estimator, Technometrics 42 (3), 212-223, 1999.
  • [19] V. Ročková and E.I. George, The spike-and-slab lasso, J. Am. Stat. Assoc. 113 (512), 431-444, 2018.
  • [20] R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B Stat. Methodol. 58 (1), 267-288, 1996.
  • [21] X. Wang, Y. Jiang, M. Huang and H. Zhang, Robust variable selection with exponential squared loss, J. Am. Stat. Assoc. 108 (502), 632-643, 2013.
  • [22] H. Wang, G. Li and G. Jiang, Robust regression shrinkage and consistent variable selection through the LAD-Lasso, J. Bus. Econ. Stat. 25 (3), 347-355, 2007.
  • [23] L. Wang and R. Li, Weighted Wilcoxon-type smoothly clipped absolute deviation method, Biometrics 65 (2), 564-571, 2009.
  • [24] Y. Wu and Y. Liu, Variable selection in quantile regression, Stat. Sin., 801-817, 2009.
  • [25] C. Wen, X. Wang and S. Wang, Laplace error penalty-based variable selection in high dimension, Scand. J. Stat., 42 (3), 685-700, 2015.
  • [26] Y. Xue, J. Ren and B. Yang, Enmsp: an elastic-net multi-step screening procedure for high-dimensional regression, Stat. Comput. 34 (2), 79, 2024.
  • [27] M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables, J. R. Stat. Soc. Ser. B Stat. Methodol. 68 (1), 49-67, 2006.
  • [28] Z. Yang, L. Fu, Y.G. Wang, Z. Dong and Y. Jiang, A robust and efficient variable selection method for linear regression, J. App. Stat. 49 (14), 3677-3692, 2022.
  • [29] C.H. Zhang, Nearly unbiased variable selection under minimax concave penalty, Ann. Stat. 38 (2), 894-942, 2010.
  • [30] T. Zhang, Analysis of multi-stage convex relaxation for sparse regularization, J. Mach. Learn. Res. 11 (3), 2010.
  • [31] J. Zhu, X. Wang, L. Hu, J. Huang, K. Jiang, Y. Zhang, S. Lin and J. Zhu, abess: A fast best-subset selection library in python and r, J. Mach. Learn. Res. 23 (202), 1-7, 2022.
  • [32] J. Zhu, C. Wen, J. Zhu, H. Zhang and X. Wang, A polynomial algorithm for bestsubset selection problem, Proc. Natl. Acad. Sci. 117 (51), 33117-33123, 2020.
  • [33] H. Zou, The adaptive lasso and its oracle properties, J. Am. Stat. Assoc. 101 (476), 1418-1429, 2006.
  • [34] H. Zou and T. Hastie, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B Stat. Methodol. 67 (2), 301-320, 2005.
  • [35] H. Zou and M. Yuan, Composite quantile regression and the oracle model selection theory, Ann. Stat. 36 (3), 1108-1126, 2008.
  • [36] H. Zou and H.H. Zhang, On the adaptive elastic-net with a diverging number of parameters, Ann. Stat. 37 (4), 1733, 2009.

Robust variable selection via the weighted elastic-net multi-step screening procedure

Year 2025, Volume: 54 Issue: 6, 2350 - 2362, 30.12.2025
https://doi.org/10.15672/hujms.1701976

Abstract

Variable selection in high-dimensional data remains a critically important, yet challenging task, particularly when confronted with highly correlated features and outliers. In this paper, we propose a novel robust variable selection method via the weighted elastic-net multi-step screening procedure. Our proposed method is not only robust to heavy-tailed errors or high leverage points, but can also handle highly correlated covariates and high-dimensional data sets with $p>n$, where $p$ is the number of predictors and $n$ is the sample size. In addition, a multi-step iterative algorithm is introduced to obtain the proposed estimator. Finally, extensive numerical simulations and a real-world NASDAQ index tracking application are conducted to illustrate the merits of the proposed method. The results indicate that our proposed method has a better finite-sample performance than some existing methods when there exist highly correlated covariates and outliers in the high-dimensional linear regression model.

Ethical Statement

The authors declare no conflict of interest related to this study.

Project Number

This work is supported by the National Science Foundation of China (12171203), and the Fundamental Research Funds for the Central Universities (23JNQMX21)

Thanks

The authors would like to express their heartfelt gratitude to the reviewers for their valuable feedback and insightful suggestions, which have greatly enhanced the quality of this work.

References

  • [1] A. Alfons, C. Croux and S. Gelper, Sparse least trimmed squares regression for analyzing high-dimensional large data sets, Ann. Appl. Stat., 226-248, 2013.
  • [2] O. Arslan, Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression, Comput. Stat. Data. An. 56 (6), 1952-1965, 2012.
  • [3] K. Boudt, P.J. Rousseeuw, S. Vanduffel and T. Verdonck, The minimum regularized covariance determinant estimator, Stat. Comput. 30 (1), 113-128, 2020.
  • [4] J. Bradic, J. Fan and W. Wang, Penalized composite quasi-likelihood for ultrahigh dimensional variable selection, J. R. Stat. Soc. Ser. B Stat. Methodol. 73 (3), 325- 349, 2011.
  • [5] P. Bühlmann, M. Kalisch and M.H. Maathuis, Variable selection in high-dimensional linear models: partially faithful distributions and the PC-simple algorithm, Biometrika 97 (2), 261-278, 2010.
  • [6] X. Chen, Z.J. Wang and M.J. McKeown, Asymptotic analysis of robust LASSOs in the presence of noise with large variance, IEEE Trans. Inf. Theory 56 (10), 5131-5149, 2010.
  • [7] H. Cho and P. Fryzlewicz, High dimensional variable selection via tilting, J. R. Stat. Soc. Ser. B Stat. Methodol. 74 (3), 593-622, 2012.
  • [8] J. Fan, Y. Fan and E. Barut, Adaptive robust variable selection, Ann. Stat. 42 (1), 324, 2014.
  • [9] J. Fan and R. Li, Nonconcave penalized likelihood with NP-dimensionality, IEEE. Trans. Inf. Theory. 57 (8), 5467-5484, 2011.
  • [10] J. Fan and R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, J. Amer. Stat. Assoc. 96 (456), 1348-1360, 2001.
  • [11] Y. Jiang, Y. Wang, J. Jiang, B. Xie, J. Liao and W. Liao, Outlier detection and robust variable selection via the penalized weighted LAD-LASSO method, J. Appl. Stat. 48 (2), 234-246, 2021.
  • [12] Y. Jiang, Y.G. Wang, L. Fu and X. Wang, Robust estimation using modified Huber’s functions with new tails, Technometrics 61 (1), 111-122, 2019.
  • [13] B.A. Johnson and L. Peng, Rank-based variable selection, J. Nonparam. Stat. 20 (3), 241-252, 2008.
  • [14] R.J. Karunamuni, L. Kong and W. Tu, Efficient robust doubly adaptive regularized regression with applications, Stat. Methods Med. Res. 28 (7), 2210-2226, 2019.
  • [15] C. Leng, Variable selection and coefficient estimation via regularized rank regression, Stat. Sin., 167-181, 2010.
  • [16] N. Li, Efficient sparse portfolios based on composite quantile regression for highdimensional index tracking, J. Stat. Comput. Simul. 90 (8), 1466-1478, 2020.
  • [17] G. Li, H. Peng and L. Zhu, Nonconcave penalized M-estimation with a diverging number of parameters, Stat. Sin., 391-419, 2011.
  • [18] P. Rousseeuw and K. Van Driessen, A fast algorithm for the minimum covariance determinant estimator, Technometrics 42 (3), 212-223, 1999.
  • [19] V. Ročková and E.I. George, The spike-and-slab lasso, J. Am. Stat. Assoc. 113 (512), 431-444, 2018.
  • [20] R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B Stat. Methodol. 58 (1), 267-288, 1996.
  • [21] X. Wang, Y. Jiang, M. Huang and H. Zhang, Robust variable selection with exponential squared loss, J. Am. Stat. Assoc. 108 (502), 632-643, 2013.
  • [22] H. Wang, G. Li and G. Jiang, Robust regression shrinkage and consistent variable selection through the LAD-Lasso, J. Bus. Econ. Stat. 25 (3), 347-355, 2007.
  • [23] L. Wang and R. Li, Weighted Wilcoxon-type smoothly clipped absolute deviation method, Biometrics 65 (2), 564-571, 2009.
  • [24] Y. Wu and Y. Liu, Variable selection in quantile regression, Stat. Sin., 801-817, 2009.
  • [25] C. Wen, X. Wang and S. Wang, Laplace error penalty-based variable selection in high dimension, Scand. J. Stat., 42 (3), 685-700, 2015.
  • [26] Y. Xue, J. Ren and B. Yang, Enmsp: an elastic-net multi-step screening procedure for high-dimensional regression, Stat. Comput. 34 (2), 79, 2024.
  • [27] M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables, J. R. Stat. Soc. Ser. B Stat. Methodol. 68 (1), 49-67, 2006.
  • [28] Z. Yang, L. Fu, Y.G. Wang, Z. Dong and Y. Jiang, A robust and efficient variable selection method for linear regression, J. App. Stat. 49 (14), 3677-3692, 2022.
  • [29] C.H. Zhang, Nearly unbiased variable selection under minimax concave penalty, Ann. Stat. 38 (2), 894-942, 2010.
  • [30] T. Zhang, Analysis of multi-stage convex relaxation for sparse regularization, J. Mach. Learn. Res. 11 (3), 2010.
  • [31] J. Zhu, X. Wang, L. Hu, J. Huang, K. Jiang, Y. Zhang, S. Lin and J. Zhu, abess: A fast best-subset selection library in python and r, J. Mach. Learn. Res. 23 (202), 1-7, 2022.
  • [32] J. Zhu, C. Wen, J. Zhu, H. Zhang and X. Wang, A polynomial algorithm for bestsubset selection problem, Proc. Natl. Acad. Sci. 117 (51), 33117-33123, 2020.
  • [33] H. Zou, The adaptive lasso and its oracle properties, J. Am. Stat. Assoc. 101 (476), 1418-1429, 2006.
  • [34] H. Zou and T. Hastie, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B Stat. Methodol. 67 (2), 301-320, 2005.
  • [35] H. Zou and M. Yuan, Composite quantile regression and the oracle model selection theory, Ann. Stat. 36 (3), 1108-1126, 2008.
  • [36] H. Zou and H.H. Zhang, On the adaptive elastic-net with a diverging number of parameters, Ann. Stat. 37 (4), 1733, 2009.
There are 36 citations in total.

Details

Primary Language English
Subjects Statistical Data Science, Applied Statistics
Journal Section Research Article
Authors

Yunlu Jıang 0000-0001-9047-3079

Huijie Lu 0009-0001-8939-5533

Xiaowen Huang 0000-0001-8810-4071

Ruizhe Jiang 0009-0004-4465-1574

Project Number This work is supported by the National Science Foundation of China (12171203), and the Fundamental Research Funds for the Central Universities (23JNQMX21)
Submission Date May 19, 2025
Acceptance Date October 2, 2025
Early Pub Date October 6, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 54 Issue: 6

Cite

APA Jıang, Y., Lu, H., Huang, X., Jiang, R. (2025). Robust variable selection via the weighted elastic-net multi-step screening procedure. Hacettepe Journal of Mathematics and Statistics, 54(6), 2350-2362. https://doi.org/10.15672/hujms.1701976
AMA Jıang Y, Lu H, Huang X, Jiang R. Robust variable selection via the weighted elastic-net multi-step screening procedure. Hacettepe Journal of Mathematics and Statistics. December 2025;54(6):2350-2362. doi:10.15672/hujms.1701976
Chicago Jıang, Yunlu, Huijie Lu, Xiaowen Huang, and Ruizhe Jiang. “Robust Variable Selection via the Weighted Elastic-Net Multi-Step Screening Procedure”. Hacettepe Journal of Mathematics and Statistics 54, no. 6 (December 2025): 2350-62. https://doi.org/10.15672/hujms.1701976.
EndNote Jıang Y, Lu H, Huang X, Jiang R (December 1, 2025) Robust variable selection via the weighted elastic-net multi-step screening procedure. Hacettepe Journal of Mathematics and Statistics 54 6 2350–2362.
IEEE Y. Jıang, H. Lu, X. Huang, and R. Jiang, “Robust variable selection via the weighted elastic-net multi-step screening procedure”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, pp. 2350–2362, 2025, doi: 10.15672/hujms.1701976.
ISNAD Jıang, Yunlu et al. “Robust Variable Selection via the Weighted Elastic-Net Multi-Step Screening Procedure”. Hacettepe Journal of Mathematics and Statistics 54/6 (December2025), 2350-2362. https://doi.org/10.15672/hujms.1701976.
JAMA Jıang Y, Lu H, Huang X, Jiang R. Robust variable selection via the weighted elastic-net multi-step screening procedure. Hacettepe Journal of Mathematics and Statistics. 2025;54:2350–2362.
MLA Jıang, Yunlu et al. “Robust Variable Selection via the Weighted Elastic-Net Multi-Step Screening Procedure”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, 2025, pp. 2350-62, doi:10.15672/hujms.1701976.
Vancouver Jıang Y, Lu H, Huang X, Jiang R. Robust variable selection via the weighted elastic-net multi-step screening procedure. Hacettepe Journal of Mathematics and Statistics. 2025;54(6):2350-62.