Year 2025,
Volume: 54 Issue: 6, 2426 - 2462, 30.12.2025
Ayesha Talib
,
Sajid Ali
,
Ismail Shah
References
-
[1] H. Ahmad, A.A. Nadi, M. Amini and B.S. Gildeh, Monitoring processes with multiple
dependent production lines using time-between-events control charts, Qual. Eng. 35
(4), 639–668, 2023.
-
[2] T.W. Akinyele, O.D. Ogunwale, E.A. Odukoya, K.P. Olayinka, Theory and properties
of a new Pareto-Gumbel distribution, J. Res. Sci. Innov. 12, 252–262, 2025.
-
[3] V. Alevizakos, C. Koukouvinos and A. Lappa, Monitoring of time between events with
a double generally weighted moving-average control chart, Qual. Reliab. Eng. Int. 35
(2), 685–710, 2019.
-
[4] S. Ali and A. Pievatolo, High quality process monitoring using a class of inter-arrival
time distributions of the renewal process, Comput. Ind. Eng. 94, 45–62, 2016.
-
[5] S. Ali, A. Pievatolo and R. Göb, An overview of control charts for high-quality processes,
Qual. Reliab. Eng. Int. 32 (7), 2171–2189, 2016.
-
[6] K. Anojahatlo and K. Sabri-Laghaie, Enhancing the detection power of multivariate
time-between-events control charts for Gumbel’s bivariate exponential distribution,
Comput. Ind. Eng. 171, 108215, 2022.
-
[7] B.C. Arnold, Pareto Distributions, CRC Press, Taylor & Francis Group, Boca Raton,
FL, 2015.
-
[8] C.M. Borror, J.B. Keats and D.C. Montgomery, Robustness of the time-between-events
CUSUM, Int. J. Prod. Res. 41 (15), 3435–3444, 2003.
-
[9] T. Calvin, Quality control techniques for “zero defects”, IEEE Trans. Components
Hybrids Manuf. Technol. 6 (3), 323–328, 1983.
-
[10] L. Chan, M. Xie and T. Goh, Cumulative quantity control charts for monitoring
production processes, Int. J. Prod. Res. 38 (2), 397–408, 2000.
-
[11] P. Chen, C. He, X. Hu, D. Yu and J.Z. Zhang, A comparison of MEWMA and
MCUSUM control charts for monitoring bivariate Weibull distribution, Commun.
Stat. Theory Methods 0 (0), 1–21, 2025.
-
[12] P. Chen, C. He, B. Liu and J. Zhang, Multivariate time-between-events control charts
for Gumbel’s bivariate exponential distribution with estimated parameters, J. Stat.
Comput. Simul. 94 (16), 3599–3632, 2024.
-
[13] P. Chen, Z. Song, X. Hu and J. Zhang, Phase II control chart for monitoring Gumbel’s
bivariate exponential distribution, Comput. Ind. Eng. 192, 110216, 2024.
-
[14] C.S. Cheng and P.W. Chen, An ARL-unbiased design of time-between-events control
charts with runs rules, J. Stat. Comput. Simul. 81 (7), 857–871, 2011.
-
[15] Y. Cheng, A. Mukherjee and M. Xie, Simultaneously monitoring frequency and magnitude
of events based on bivariate gamma distribution, J. Stat. Comput. Simul. 87
(9), 1723–1741, 2017.
-
[16] R.B. Crosier, Multivariate generalizations of cumulative sum quality control schemes,
Technometrics 30 (3), 291–303, 1988.
-
[17] R.M. Dickinson, D.A.O. Roberts, A.R. Driscoll, W.H. Woodall and G.G. Vining,
CUSUM charts for monitoring the characteristic life of censored Weibull lifetimes, J.
Qual. Technol. 46 (4), 340–358, 2014.
-
[18] M. Émile and J. Gumbel, Distributions des valeurs extrêmes en plusieurs dimensions,
Ann. ISUP 9, 171–173, 1960.
-
[19] Y.Y. Fang, M.B. Khoo, S.Y. Teh and M. Xie, Monitoring of time-between-events with
a generalized group runs control chart, Qual. Reliab. Eng. Int. 32 (3), 767–781, 2016.
-
[20] F. Gan, Designs of one- and two-sided exponential EWMA charts, J. Qual. Technol.
30 (1), 55–69, 1998.
-
[21] C. Genest and J. MacKay, The joy of copulas: Bivariate distributions with uniform
marginals, Amer. Statist. 40 (4), 280–283 1986.
-
[22] C. Genest and L.P. Rivest, Statistical inference procedures for bivariate Archimedean
copulas, J. Amer. Stat. Assoc. 88 (423), 1034–1043, 1993.
-
[23] E.J. Gumbel, Bivariate exponential distributions, J. Amer. Stat. Assoc. 55 (292),
698–707, 1960.
-
[24] B. Guo, Y. Yang and P. Castagliola, Optimal design of time-between-event control
charts with parameter estimation, Qual. Eng. 36, 1–12, 2024.
-
[25] D.M. Hawkins and E.M. Maboudou-Tchao, Multivariate exponentially weighted moving
covariance matrix, Technometrics 50 (2), 155–166, 2008.
-
[26] J. Liu, M. Xie, T. Goh and P. Sharma, A comparative study of exponential timebetween-
events charts, Qual. Technol. Quant. Manag. 3 (3), 347–359, 2006.
-
[27] C.A. Lowry, W.H. Woodall, C.W. Champ and S.E. Rigdon, A multivariate exponentially
weighted moving-average control chart, Technometrics 34 (1), 46–53, 1992.
-
[28] J. M. Lucas, Counted data CUSUM’s, Technometrics 27 (2), 129–144, 1985.
-
[29] D.C. Montgomery, Introduction to Statistical Quality Control, John Wiley & Sons,
2020.
-
[30] M.W.N. Nasrallah, Estimating parameters of the Gumbel–Pareto distribution, Diyala
J. Pure Sci. 14 (2), 53–60, 2018.
-
[31] R.B. Nelsen, An Introduction to Copulas, Springer, 2006.
-
[32] L. Qu, Z. Wu, M.B. Khoo and A. Rahim, Time-between-event control charts for
sampling inspection, Technometrics 56 (3), 336–346, 2014.
-
[33] L. Qu, S. He, M.B. Khoo and P. Castagliola, A CUSUM chart for detecting the
intensity ratio of negative events, Int. J. Prod. Res. 56 (19), 6553–6567, 2018.
-
[34] A. Saghir, G. S. Rao, M. Aslam and A.A. Janjua, Pareto distribution-based Shewhart
control chart for early detection of process mean shifts, J. Stat. Theory Appl. 23 (1),
26–43, 2024.
-
[35] R.A. Sanusi, S.Y. Teh and M.B. Khoo, Simultaneous monitoring of magnitude and
time-between-events data with a Max-EWMA control chart, Comput. Ind. Eng. 142,
106378, 2020.
-
[36] M. Sklar, Fonctions de répartition à n dimensions et leurs marges, Ann. ISUP 8,
229–231, 1959.
-
[37] J.L. Szarka III and W.H. Woodall, On the equivalence of the Bernoulli and geometric
CUSUM charts, J. Qual. Technol. 44 (1), 54–62, 2012.
-
[38] M.H. Tahir, M.A. Hussain, G.M. Cordeiro, G. Hamedani, M. Mansoor and M. Zubair,
The Gumbel–Lomax distribution: properties and applications, J. Stat. Theory Appl.
15 (1), 61–79, 2016.
-
[39] A. Talib, S. Ali and I. Shah, An efficient MEWMA chart for Gumbel’s bivariate Pareto
distribution, J. Taibah Univ. Sci. 18 (1), 2338949, 2024.
-
[40] A. Talib, S. Ali and I. Shah, Max-EWMA chart for time and magnitude monitoring
using exponentially modified Gaussian distribution, Qual. Reliab. Eng. Int. 38 (2),
1092–1111, 2022.
-
[41] M. Thevaraja, Copula Theory and Regression Analysis, Minnesota State Univ.,
Mankato, 2018.
-
[42] P.K. Trivedi and D.M. Zimmer, Copula modeling: An introduction for practitioners,
Found. Trends Econom. 1 (1), 1–111, 2007.
-
[43] S. Vardeman and D. O. Ray, Average run lengths for CUSUM schemes when observations
are exponentially distributed, Technometrics 27 (2), 145–150, 1985.
-
[44] Z. Wu, J. Jiao and Z. He, A control scheme for monitoring the frequency and magnitude
of an event, Int. J. Prod. Res. 47 (11), 2887–2902, 2009.
-
[45] Y. Xie, M. Xie and T.N. Goh, Two MEWMA charts for Gumbel’s bivariate exponential
distribution, J. Qual. Technol. 43 (1), 50–65, 2011.
-
[46] M. Xie, T.N. Goh and P. Ranjan, Some effective control chart procedures for reliability
monitoring, Reliab. Eng. Syst. Saf. 77 (2), 143–150, 2002.
-
[47] F. Xie, J. Sun, P. Castagliola, X. Hu and A. Tang, A multivariate CUSUM control
chart for monitoring Gumbel’s bivariate exponential data, Qual. Reliab. Eng. Int. 37
(1), 10–33, 2021.
-
[48] F. Xie, A. Mukherjee, J. Sun, A. Tang and X. Hu, A synthetic multivariate exponentially
weighted moving average scheme for monitoring of bivariate gamma distributed
processes, Qual. Reliab. Eng. Int. 38 (2), 848–876, 2022.
-
[49] S. Xu and D.R. Jeske, Weighted EWMA charts for monitoring type I censored Weibull
lifetimes, J. Qual. Technol. 50 (2), 220–230, 2018.
-
[50] L. Xue, L. An, S. Feng, Y. Liu, H. Wu and Q. Wang, A nonparametric adaptive
EWMA control chart for monitoring multivariate time-between-events and amplitude
data, Comput. Ind. Eng. 190, 110250, 2024.
-
[51] C. Zhang, M. Xie, J. Liu and T. Goh, A control chart for the gamma distribution as
a model of time-between-events, Int. J. Prod. Res. 45(23), 5649–5666, 2007.
-
[52] I.M. Zwetsloot, T. Mahmood and W.H. Woodall, Multivariate time-between-events
monitoring: an overview and some overlooked underlying complexities, Qual. Eng. 33
(1), 13–25, 2020.
-
[53] I.M. Zwetsloot, T. Mahmood, F.M. Taiwo and Z. Wang, A real-time monitoring
approach for bivariate event data, Appl. Stoch. Models Bus. Ind. 39 (6), 789–817,
2023.
A new MCUSUM chart for Gumbel's bivariate Pareto distribution
Year 2025,
Volume: 54 Issue: 6, 2426 - 2462, 30.12.2025
Ayesha Talib
,
Sajid Ali
,
Ismail Shah
Abstract
Statistical process control aims to quickly detect any changes that occur in the process and design strategies to reduce variability and improve the process accordingly. A control chart is a widely used SPC tool that is used to track changes in a process. Time-between-events control schemes efficiently monitor temporal quality characteristics and are especially effective for monitoring high-quality processes. The time-between-events datasets are not normally distributed and follow a skewed distribution. This study proposes a multivariate cumulative sum control chart to monitor Gumbel’s bivariate Pareto type II data. Monte Carlo simulations are used to compute and compare the run length characteristics of the proposed chart with the existing ones. A real data set and a simulated data set are considered to illustrate the implementation of the proposed chart compared to existing charts. The proposed chart is also compared with other members of the Archimedean copula family.
Supporting Institution
NA
Thanks
The authors gratefully acknowledge the comments and suggestions of the two anonymous reviewers and the associate editor, which helped improve the quality and presentation of this work.
References
-
[1] H. Ahmad, A.A. Nadi, M. Amini and B.S. Gildeh, Monitoring processes with multiple
dependent production lines using time-between-events control charts, Qual. Eng. 35
(4), 639–668, 2023.
-
[2] T.W. Akinyele, O.D. Ogunwale, E.A. Odukoya, K.P. Olayinka, Theory and properties
of a new Pareto-Gumbel distribution, J. Res. Sci. Innov. 12, 252–262, 2025.
-
[3] V. Alevizakos, C. Koukouvinos and A. Lappa, Monitoring of time between events with
a double generally weighted moving-average control chart, Qual. Reliab. Eng. Int. 35
(2), 685–710, 2019.
-
[4] S. Ali and A. Pievatolo, High quality process monitoring using a class of inter-arrival
time distributions of the renewal process, Comput. Ind. Eng. 94, 45–62, 2016.
-
[5] S. Ali, A. Pievatolo and R. Göb, An overview of control charts for high-quality processes,
Qual. Reliab. Eng. Int. 32 (7), 2171–2189, 2016.
-
[6] K. Anojahatlo and K. Sabri-Laghaie, Enhancing the detection power of multivariate
time-between-events control charts for Gumbel’s bivariate exponential distribution,
Comput. Ind. Eng. 171, 108215, 2022.
-
[7] B.C. Arnold, Pareto Distributions, CRC Press, Taylor & Francis Group, Boca Raton,
FL, 2015.
-
[8] C.M. Borror, J.B. Keats and D.C. Montgomery, Robustness of the time-between-events
CUSUM, Int. J. Prod. Res. 41 (15), 3435–3444, 2003.
-
[9] T. Calvin, Quality control techniques for “zero defects”, IEEE Trans. Components
Hybrids Manuf. Technol. 6 (3), 323–328, 1983.
-
[10] L. Chan, M. Xie and T. Goh, Cumulative quantity control charts for monitoring
production processes, Int. J. Prod. Res. 38 (2), 397–408, 2000.
-
[11] P. Chen, C. He, X. Hu, D. Yu and J.Z. Zhang, A comparison of MEWMA and
MCUSUM control charts for monitoring bivariate Weibull distribution, Commun.
Stat. Theory Methods 0 (0), 1–21, 2025.
-
[12] P. Chen, C. He, B. Liu and J. Zhang, Multivariate time-between-events control charts
for Gumbel’s bivariate exponential distribution with estimated parameters, J. Stat.
Comput. Simul. 94 (16), 3599–3632, 2024.
-
[13] P. Chen, Z. Song, X. Hu and J. Zhang, Phase II control chart for monitoring Gumbel’s
bivariate exponential distribution, Comput. Ind. Eng. 192, 110216, 2024.
-
[14] C.S. Cheng and P.W. Chen, An ARL-unbiased design of time-between-events control
charts with runs rules, J. Stat. Comput. Simul. 81 (7), 857–871, 2011.
-
[15] Y. Cheng, A. Mukherjee and M. Xie, Simultaneously monitoring frequency and magnitude
of events based on bivariate gamma distribution, J. Stat. Comput. Simul. 87
(9), 1723–1741, 2017.
-
[16] R.B. Crosier, Multivariate generalizations of cumulative sum quality control schemes,
Technometrics 30 (3), 291–303, 1988.
-
[17] R.M. Dickinson, D.A.O. Roberts, A.R. Driscoll, W.H. Woodall and G.G. Vining,
CUSUM charts for monitoring the characteristic life of censored Weibull lifetimes, J.
Qual. Technol. 46 (4), 340–358, 2014.
-
[18] M. Émile and J. Gumbel, Distributions des valeurs extrêmes en plusieurs dimensions,
Ann. ISUP 9, 171–173, 1960.
-
[19] Y.Y. Fang, M.B. Khoo, S.Y. Teh and M. Xie, Monitoring of time-between-events with
a generalized group runs control chart, Qual. Reliab. Eng. Int. 32 (3), 767–781, 2016.
-
[20] F. Gan, Designs of one- and two-sided exponential EWMA charts, J. Qual. Technol.
30 (1), 55–69, 1998.
-
[21] C. Genest and J. MacKay, The joy of copulas: Bivariate distributions with uniform
marginals, Amer. Statist. 40 (4), 280–283 1986.
-
[22] C. Genest and L.P. Rivest, Statistical inference procedures for bivariate Archimedean
copulas, J. Amer. Stat. Assoc. 88 (423), 1034–1043, 1993.
-
[23] E.J. Gumbel, Bivariate exponential distributions, J. Amer. Stat. Assoc. 55 (292),
698–707, 1960.
-
[24] B. Guo, Y. Yang and P. Castagliola, Optimal design of time-between-event control
charts with parameter estimation, Qual. Eng. 36, 1–12, 2024.
-
[25] D.M. Hawkins and E.M. Maboudou-Tchao, Multivariate exponentially weighted moving
covariance matrix, Technometrics 50 (2), 155–166, 2008.
-
[26] J. Liu, M. Xie, T. Goh and P. Sharma, A comparative study of exponential timebetween-
events charts, Qual. Technol. Quant. Manag. 3 (3), 347–359, 2006.
-
[27] C.A. Lowry, W.H. Woodall, C.W. Champ and S.E. Rigdon, A multivariate exponentially
weighted moving-average control chart, Technometrics 34 (1), 46–53, 1992.
-
[28] J. M. Lucas, Counted data CUSUM’s, Technometrics 27 (2), 129–144, 1985.
-
[29] D.C. Montgomery, Introduction to Statistical Quality Control, John Wiley & Sons,
2020.
-
[30] M.W.N. Nasrallah, Estimating parameters of the Gumbel–Pareto distribution, Diyala
J. Pure Sci. 14 (2), 53–60, 2018.
-
[31] R.B. Nelsen, An Introduction to Copulas, Springer, 2006.
-
[32] L. Qu, Z. Wu, M.B. Khoo and A. Rahim, Time-between-event control charts for
sampling inspection, Technometrics 56 (3), 336–346, 2014.
-
[33] L. Qu, S. He, M.B. Khoo and P. Castagliola, A CUSUM chart for detecting the
intensity ratio of negative events, Int. J. Prod. Res. 56 (19), 6553–6567, 2018.
-
[34] A. Saghir, G. S. Rao, M. Aslam and A.A. Janjua, Pareto distribution-based Shewhart
control chart for early detection of process mean shifts, J. Stat. Theory Appl. 23 (1),
26–43, 2024.
-
[35] R.A. Sanusi, S.Y. Teh and M.B. Khoo, Simultaneous monitoring of magnitude and
time-between-events data with a Max-EWMA control chart, Comput. Ind. Eng. 142,
106378, 2020.
-
[36] M. Sklar, Fonctions de répartition à n dimensions et leurs marges, Ann. ISUP 8,
229–231, 1959.
-
[37] J.L. Szarka III and W.H. Woodall, On the equivalence of the Bernoulli and geometric
CUSUM charts, J. Qual. Technol. 44 (1), 54–62, 2012.
-
[38] M.H. Tahir, M.A. Hussain, G.M. Cordeiro, G. Hamedani, M. Mansoor and M. Zubair,
The Gumbel–Lomax distribution: properties and applications, J. Stat. Theory Appl.
15 (1), 61–79, 2016.
-
[39] A. Talib, S. Ali and I. Shah, An efficient MEWMA chart for Gumbel’s bivariate Pareto
distribution, J. Taibah Univ. Sci. 18 (1), 2338949, 2024.
-
[40] A. Talib, S. Ali and I. Shah, Max-EWMA chart for time and magnitude monitoring
using exponentially modified Gaussian distribution, Qual. Reliab. Eng. Int. 38 (2),
1092–1111, 2022.
-
[41] M. Thevaraja, Copula Theory and Regression Analysis, Minnesota State Univ.,
Mankato, 2018.
-
[42] P.K. Trivedi and D.M. Zimmer, Copula modeling: An introduction for practitioners,
Found. Trends Econom. 1 (1), 1–111, 2007.
-
[43] S. Vardeman and D. O. Ray, Average run lengths for CUSUM schemes when observations
are exponentially distributed, Technometrics 27 (2), 145–150, 1985.
-
[44] Z. Wu, J. Jiao and Z. He, A control scheme for monitoring the frequency and magnitude
of an event, Int. J. Prod. Res. 47 (11), 2887–2902, 2009.
-
[45] Y. Xie, M. Xie and T.N. Goh, Two MEWMA charts for Gumbel’s bivariate exponential
distribution, J. Qual. Technol. 43 (1), 50–65, 2011.
-
[46] M. Xie, T.N. Goh and P. Ranjan, Some effective control chart procedures for reliability
monitoring, Reliab. Eng. Syst. Saf. 77 (2), 143–150, 2002.
-
[47] F. Xie, J. Sun, P. Castagliola, X. Hu and A. Tang, A multivariate CUSUM control
chart for monitoring Gumbel’s bivariate exponential data, Qual. Reliab. Eng. Int. 37
(1), 10–33, 2021.
-
[48] F. Xie, A. Mukherjee, J. Sun, A. Tang and X. Hu, A synthetic multivariate exponentially
weighted moving average scheme for monitoring of bivariate gamma distributed
processes, Qual. Reliab. Eng. Int. 38 (2), 848–876, 2022.
-
[49] S. Xu and D.R. Jeske, Weighted EWMA charts for monitoring type I censored Weibull
lifetimes, J. Qual. Technol. 50 (2), 220–230, 2018.
-
[50] L. Xue, L. An, S. Feng, Y. Liu, H. Wu and Q. Wang, A nonparametric adaptive
EWMA control chart for monitoring multivariate time-between-events and amplitude
data, Comput. Ind. Eng. 190, 110250, 2024.
-
[51] C. Zhang, M. Xie, J. Liu and T. Goh, A control chart for the gamma distribution as
a model of time-between-events, Int. J. Prod. Res. 45(23), 5649–5666, 2007.
-
[52] I.M. Zwetsloot, T. Mahmood and W.H. Woodall, Multivariate time-between-events
monitoring: an overview and some overlooked underlying complexities, Qual. Eng. 33
(1), 13–25, 2020.
-
[53] I.M. Zwetsloot, T. Mahmood, F.M. Taiwo and Z. Wang, A real-time monitoring
approach for bivariate event data, Appl. Stoch. Models Bus. Ind. 39 (6), 789–817,
2023.