Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 6, 2426 - 2462, 30.12.2025
https://doi.org/10.15672/hujms.1705940

Abstract

Project Number

NA

References

  • [1] H. Ahmad, A.A. Nadi, M. Amini and B.S. Gildeh, Monitoring processes with multiple dependent production lines using time-between-events control charts, Qual. Eng. 35 (4), 639–668, 2023.
  • [2] T.W. Akinyele, O.D. Ogunwale, E.A. Odukoya, K.P. Olayinka, Theory and properties of a new Pareto-Gumbel distribution, J. Res. Sci. Innov. 12, 252–262, 2025.
  • [3] V. Alevizakos, C. Koukouvinos and A. Lappa, Monitoring of time between events with a double generally weighted moving-average control chart, Qual. Reliab. Eng. Int. 35 (2), 685–710, 2019.
  • [4] S. Ali and A. Pievatolo, High quality process monitoring using a class of inter-arrival time distributions of the renewal process, Comput. Ind. Eng. 94, 45–62, 2016.
  • [5] S. Ali, A. Pievatolo and R. Göb, An overview of control charts for high-quality processes, Qual. Reliab. Eng. Int. 32 (7), 2171–2189, 2016.
  • [6] K. Anojahatlo and K. Sabri-Laghaie, Enhancing the detection power of multivariate time-between-events control charts for Gumbel’s bivariate exponential distribution, Comput. Ind. Eng. 171, 108215, 2022.
  • [7] B.C. Arnold, Pareto Distributions, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2015.
  • [8] C.M. Borror, J.B. Keats and D.C. Montgomery, Robustness of the time-between-events CUSUM, Int. J. Prod. Res. 41 (15), 3435–3444, 2003.
  • [9] T. Calvin, Quality control techniques for “zero defects”, IEEE Trans. Components Hybrids Manuf. Technol. 6 (3), 323–328, 1983.
  • [10] L. Chan, M. Xie and T. Goh, Cumulative quantity control charts for monitoring production processes, Int. J. Prod. Res. 38 (2), 397–408, 2000.
  • [11] P. Chen, C. He, X. Hu, D. Yu and J.Z. Zhang, A comparison of MEWMA and MCUSUM control charts for monitoring bivariate Weibull distribution, Commun. Stat. Theory Methods 0 (0), 1–21, 2025.
  • [12] P. Chen, C. He, B. Liu and J. Zhang, Multivariate time-between-events control charts for Gumbel’s bivariate exponential distribution with estimated parameters, J. Stat. Comput. Simul. 94 (16), 3599–3632, 2024.
  • [13] P. Chen, Z. Song, X. Hu and J. Zhang, Phase II control chart for monitoring Gumbel’s bivariate exponential distribution, Comput. Ind. Eng. 192, 110216, 2024.
  • [14] C.S. Cheng and P.W. Chen, An ARL-unbiased design of time-between-events control charts with runs rules, J. Stat. Comput. Simul. 81 (7), 857–871, 2011.
  • [15] Y. Cheng, A. Mukherjee and M. Xie, Simultaneously monitoring frequency and magnitude of events based on bivariate gamma distribution, J. Stat. Comput. Simul. 87 (9), 1723–1741, 2017.
  • [16] R.B. Crosier, Multivariate generalizations of cumulative sum quality control schemes, Technometrics 30 (3), 291–303, 1988.
  • [17] R.M. Dickinson, D.A.O. Roberts, A.R. Driscoll, W.H. Woodall and G.G. Vining, CUSUM charts for monitoring the characteristic life of censored Weibull lifetimes, J. Qual. Technol. 46 (4), 340–358, 2014.
  • [18] M. Émile and J. Gumbel, Distributions des valeurs extrêmes en plusieurs dimensions, Ann. ISUP 9, 171–173, 1960.
  • [19] Y.Y. Fang, M.B. Khoo, S.Y. Teh and M. Xie, Monitoring of time-between-events with a generalized group runs control chart, Qual. Reliab. Eng. Int. 32 (3), 767–781, 2016.
  • [20] F. Gan, Designs of one- and two-sided exponential EWMA charts, J. Qual. Technol. 30 (1), 55–69, 1998.
  • [21] C. Genest and J. MacKay, The joy of copulas: Bivariate distributions with uniform marginals, Amer. Statist. 40 (4), 280–283 1986.
  • [22] C. Genest and L.P. Rivest, Statistical inference procedures for bivariate Archimedean copulas, J. Amer. Stat. Assoc. 88 (423), 1034–1043, 1993.
  • [23] E.J. Gumbel, Bivariate exponential distributions, J. Amer. Stat. Assoc. 55 (292), 698–707, 1960.
  • [24] B. Guo, Y. Yang and P. Castagliola, Optimal design of time-between-event control charts with parameter estimation, Qual. Eng. 36, 1–12, 2024.
  • [25] D.M. Hawkins and E.M. Maboudou-Tchao, Multivariate exponentially weighted moving covariance matrix, Technometrics 50 (2), 155–166, 2008.
  • [26] J. Liu, M. Xie, T. Goh and P. Sharma, A comparative study of exponential timebetween- events charts, Qual. Technol. Quant. Manag. 3 (3), 347–359, 2006.
  • [27] C.A. Lowry, W.H. Woodall, C.W. Champ and S.E. Rigdon, A multivariate exponentially weighted moving-average control chart, Technometrics 34 (1), 46–53, 1992.
  • [28] J. M. Lucas, Counted data CUSUM’s, Technometrics 27 (2), 129–144, 1985.
  • [29] D.C. Montgomery, Introduction to Statistical Quality Control, John Wiley & Sons, 2020.
  • [30] M.W.N. Nasrallah, Estimating parameters of the Gumbel–Pareto distribution, Diyala J. Pure Sci. 14 (2), 53–60, 2018.
  • [31] R.B. Nelsen, An Introduction to Copulas, Springer, 2006.
  • [32] L. Qu, Z. Wu, M.B. Khoo and A. Rahim, Time-between-event control charts for sampling inspection, Technometrics 56 (3), 336–346, 2014.
  • [33] L. Qu, S. He, M.B. Khoo and P. Castagliola, A CUSUM chart for detecting the intensity ratio of negative events, Int. J. Prod. Res. 56 (19), 6553–6567, 2018.
  • [34] A. Saghir, G. S. Rao, M. Aslam and A.A. Janjua, Pareto distribution-based Shewhart control chart for early detection of process mean shifts, J. Stat. Theory Appl. 23 (1), 26–43, 2024.
  • [35] R.A. Sanusi, S.Y. Teh and M.B. Khoo, Simultaneous monitoring of magnitude and time-between-events data with a Max-EWMA control chart, Comput. Ind. Eng. 142, 106378, 2020.
  • [36] M. Sklar, Fonctions de répartition à n dimensions et leurs marges, Ann. ISUP 8, 229–231, 1959.
  • [37] J.L. Szarka III and W.H. Woodall, On the equivalence of the Bernoulli and geometric CUSUM charts, J. Qual. Technol. 44 (1), 54–62, 2012.
  • [38] M.H. Tahir, M.A. Hussain, G.M. Cordeiro, G. Hamedani, M. Mansoor and M. Zubair, The Gumbel–Lomax distribution: properties and applications, J. Stat. Theory Appl. 15 (1), 61–79, 2016.
  • [39] A. Talib, S. Ali and I. Shah, An efficient MEWMA chart for Gumbel’s bivariate Pareto distribution, J. Taibah Univ. Sci. 18 (1), 2338949, 2024.
  • [40] A. Talib, S. Ali and I. Shah, Max-EWMA chart for time and magnitude monitoring using exponentially modified Gaussian distribution, Qual. Reliab. Eng. Int. 38 (2), 1092–1111, 2022.
  • [41] M. Thevaraja, Copula Theory and Regression Analysis, Minnesota State Univ., Mankato, 2018.
  • [42] P.K. Trivedi and D.M. Zimmer, Copula modeling: An introduction for practitioners, Found. Trends Econom. 1 (1), 1–111, 2007.
  • [43] S. Vardeman and D. O. Ray, Average run lengths for CUSUM schemes when observations are exponentially distributed, Technometrics 27 (2), 145–150, 1985.
  • [44] Z. Wu, J. Jiao and Z. He, A control scheme for monitoring the frequency and magnitude of an event, Int. J. Prod. Res. 47 (11), 2887–2902, 2009.
  • [45] Y. Xie, M. Xie and T.N. Goh, Two MEWMA charts for Gumbel’s bivariate exponential distribution, J. Qual. Technol. 43 (1), 50–65, 2011.
  • [46] M. Xie, T.N. Goh and P. Ranjan, Some effective control chart procedures for reliability monitoring, Reliab. Eng. Syst. Saf. 77 (2), 143–150, 2002.
  • [47] F. Xie, J. Sun, P. Castagliola, X. Hu and A. Tang, A multivariate CUSUM control chart for monitoring Gumbel’s bivariate exponential data, Qual. Reliab. Eng. Int. 37 (1), 10–33, 2021.
  • [48] F. Xie, A. Mukherjee, J. Sun, A. Tang and X. Hu, A synthetic multivariate exponentially weighted moving average scheme for monitoring of bivariate gamma distributed processes, Qual. Reliab. Eng. Int. 38 (2), 848–876, 2022.
  • [49] S. Xu and D.R. Jeske, Weighted EWMA charts for monitoring type I censored Weibull lifetimes, J. Qual. Technol. 50 (2), 220–230, 2018.
  • [50] L. Xue, L. An, S. Feng, Y. Liu, H. Wu and Q. Wang, A nonparametric adaptive EWMA control chart for monitoring multivariate time-between-events and amplitude data, Comput. Ind. Eng. 190, 110250, 2024.
  • [51] C. Zhang, M. Xie, J. Liu and T. Goh, A control chart for the gamma distribution as a model of time-between-events, Int. J. Prod. Res. 45(23), 5649–5666, 2007.
  • [52] I.M. Zwetsloot, T. Mahmood and W.H. Woodall, Multivariate time-between-events monitoring: an overview and some overlooked underlying complexities, Qual. Eng. 33 (1), 13–25, 2020.
  • [53] I.M. Zwetsloot, T. Mahmood, F.M. Taiwo and Z. Wang, A real-time monitoring approach for bivariate event data, Appl. Stoch. Models Bus. Ind. 39 (6), 789–817, 2023.

A new MCUSUM chart for Gumbel's bivariate Pareto distribution

Year 2025, Volume: 54 Issue: 6, 2426 - 2462, 30.12.2025
https://doi.org/10.15672/hujms.1705940

Abstract

Statistical process control aims to quickly detect any changes that occur in the process and design strategies to reduce variability and improve the process accordingly. A control chart is a widely used SPC tool that is used to track changes in a process. Time-between-events control schemes efficiently monitor temporal quality characteristics and are especially effective for monitoring high-quality processes. The time-between-events datasets are not normally distributed and follow a skewed distribution. This study proposes a multivariate cumulative sum control chart to monitor Gumbel’s bivariate Pareto type II data. Monte Carlo simulations are used to compute and compare the run length characteristics of the proposed chart with the existing ones. A real data set and a simulated data set are considered to illustrate the implementation of the proposed chart compared to existing charts. The proposed chart is also compared with other members of the Archimedean copula family.

Ethical Statement

.

Supporting Institution

NA

Project Number

NA

Thanks

The authors gratefully acknowledge the comments and suggestions of the two anonymous reviewers and the associate editor, which helped improve the quality and presentation of this work.

References

  • [1] H. Ahmad, A.A. Nadi, M. Amini and B.S. Gildeh, Monitoring processes with multiple dependent production lines using time-between-events control charts, Qual. Eng. 35 (4), 639–668, 2023.
  • [2] T.W. Akinyele, O.D. Ogunwale, E.A. Odukoya, K.P. Olayinka, Theory and properties of a new Pareto-Gumbel distribution, J. Res. Sci. Innov. 12, 252–262, 2025.
  • [3] V. Alevizakos, C. Koukouvinos and A. Lappa, Monitoring of time between events with a double generally weighted moving-average control chart, Qual. Reliab. Eng. Int. 35 (2), 685–710, 2019.
  • [4] S. Ali and A. Pievatolo, High quality process monitoring using a class of inter-arrival time distributions of the renewal process, Comput. Ind. Eng. 94, 45–62, 2016.
  • [5] S. Ali, A. Pievatolo and R. Göb, An overview of control charts for high-quality processes, Qual. Reliab. Eng. Int. 32 (7), 2171–2189, 2016.
  • [6] K. Anojahatlo and K. Sabri-Laghaie, Enhancing the detection power of multivariate time-between-events control charts for Gumbel’s bivariate exponential distribution, Comput. Ind. Eng. 171, 108215, 2022.
  • [7] B.C. Arnold, Pareto Distributions, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2015.
  • [8] C.M. Borror, J.B. Keats and D.C. Montgomery, Robustness of the time-between-events CUSUM, Int. J. Prod. Res. 41 (15), 3435–3444, 2003.
  • [9] T. Calvin, Quality control techniques for “zero defects”, IEEE Trans. Components Hybrids Manuf. Technol. 6 (3), 323–328, 1983.
  • [10] L. Chan, M. Xie and T. Goh, Cumulative quantity control charts for monitoring production processes, Int. J. Prod. Res. 38 (2), 397–408, 2000.
  • [11] P. Chen, C. He, X. Hu, D. Yu and J.Z. Zhang, A comparison of MEWMA and MCUSUM control charts for monitoring bivariate Weibull distribution, Commun. Stat. Theory Methods 0 (0), 1–21, 2025.
  • [12] P. Chen, C. He, B. Liu and J. Zhang, Multivariate time-between-events control charts for Gumbel’s bivariate exponential distribution with estimated parameters, J. Stat. Comput. Simul. 94 (16), 3599–3632, 2024.
  • [13] P. Chen, Z. Song, X. Hu and J. Zhang, Phase II control chart for monitoring Gumbel’s bivariate exponential distribution, Comput. Ind. Eng. 192, 110216, 2024.
  • [14] C.S. Cheng and P.W. Chen, An ARL-unbiased design of time-between-events control charts with runs rules, J. Stat. Comput. Simul. 81 (7), 857–871, 2011.
  • [15] Y. Cheng, A. Mukherjee and M. Xie, Simultaneously monitoring frequency and magnitude of events based on bivariate gamma distribution, J. Stat. Comput. Simul. 87 (9), 1723–1741, 2017.
  • [16] R.B. Crosier, Multivariate generalizations of cumulative sum quality control schemes, Technometrics 30 (3), 291–303, 1988.
  • [17] R.M. Dickinson, D.A.O. Roberts, A.R. Driscoll, W.H. Woodall and G.G. Vining, CUSUM charts for monitoring the characteristic life of censored Weibull lifetimes, J. Qual. Technol. 46 (4), 340–358, 2014.
  • [18] M. Émile and J. Gumbel, Distributions des valeurs extrêmes en plusieurs dimensions, Ann. ISUP 9, 171–173, 1960.
  • [19] Y.Y. Fang, M.B. Khoo, S.Y. Teh and M. Xie, Monitoring of time-between-events with a generalized group runs control chart, Qual. Reliab. Eng. Int. 32 (3), 767–781, 2016.
  • [20] F. Gan, Designs of one- and two-sided exponential EWMA charts, J. Qual. Technol. 30 (1), 55–69, 1998.
  • [21] C. Genest and J. MacKay, The joy of copulas: Bivariate distributions with uniform marginals, Amer. Statist. 40 (4), 280–283 1986.
  • [22] C. Genest and L.P. Rivest, Statistical inference procedures for bivariate Archimedean copulas, J. Amer. Stat. Assoc. 88 (423), 1034–1043, 1993.
  • [23] E.J. Gumbel, Bivariate exponential distributions, J. Amer. Stat. Assoc. 55 (292), 698–707, 1960.
  • [24] B. Guo, Y. Yang and P. Castagliola, Optimal design of time-between-event control charts with parameter estimation, Qual. Eng. 36, 1–12, 2024.
  • [25] D.M. Hawkins and E.M. Maboudou-Tchao, Multivariate exponentially weighted moving covariance matrix, Technometrics 50 (2), 155–166, 2008.
  • [26] J. Liu, M. Xie, T. Goh and P. Sharma, A comparative study of exponential timebetween- events charts, Qual. Technol. Quant. Manag. 3 (3), 347–359, 2006.
  • [27] C.A. Lowry, W.H. Woodall, C.W. Champ and S.E. Rigdon, A multivariate exponentially weighted moving-average control chart, Technometrics 34 (1), 46–53, 1992.
  • [28] J. M. Lucas, Counted data CUSUM’s, Technometrics 27 (2), 129–144, 1985.
  • [29] D.C. Montgomery, Introduction to Statistical Quality Control, John Wiley & Sons, 2020.
  • [30] M.W.N. Nasrallah, Estimating parameters of the Gumbel–Pareto distribution, Diyala J. Pure Sci. 14 (2), 53–60, 2018.
  • [31] R.B. Nelsen, An Introduction to Copulas, Springer, 2006.
  • [32] L. Qu, Z. Wu, M.B. Khoo and A. Rahim, Time-between-event control charts for sampling inspection, Technometrics 56 (3), 336–346, 2014.
  • [33] L. Qu, S. He, M.B. Khoo and P. Castagliola, A CUSUM chart for detecting the intensity ratio of negative events, Int. J. Prod. Res. 56 (19), 6553–6567, 2018.
  • [34] A. Saghir, G. S. Rao, M. Aslam and A.A. Janjua, Pareto distribution-based Shewhart control chart for early detection of process mean shifts, J. Stat. Theory Appl. 23 (1), 26–43, 2024.
  • [35] R.A. Sanusi, S.Y. Teh and M.B. Khoo, Simultaneous monitoring of magnitude and time-between-events data with a Max-EWMA control chart, Comput. Ind. Eng. 142, 106378, 2020.
  • [36] M. Sklar, Fonctions de répartition à n dimensions et leurs marges, Ann. ISUP 8, 229–231, 1959.
  • [37] J.L. Szarka III and W.H. Woodall, On the equivalence of the Bernoulli and geometric CUSUM charts, J. Qual. Technol. 44 (1), 54–62, 2012.
  • [38] M.H. Tahir, M.A. Hussain, G.M. Cordeiro, G. Hamedani, M. Mansoor and M. Zubair, The Gumbel–Lomax distribution: properties and applications, J. Stat. Theory Appl. 15 (1), 61–79, 2016.
  • [39] A. Talib, S. Ali and I. Shah, An efficient MEWMA chart for Gumbel’s bivariate Pareto distribution, J. Taibah Univ. Sci. 18 (1), 2338949, 2024.
  • [40] A. Talib, S. Ali and I. Shah, Max-EWMA chart for time and magnitude monitoring using exponentially modified Gaussian distribution, Qual. Reliab. Eng. Int. 38 (2), 1092–1111, 2022.
  • [41] M. Thevaraja, Copula Theory and Regression Analysis, Minnesota State Univ., Mankato, 2018.
  • [42] P.K. Trivedi and D.M. Zimmer, Copula modeling: An introduction for practitioners, Found. Trends Econom. 1 (1), 1–111, 2007.
  • [43] S. Vardeman and D. O. Ray, Average run lengths for CUSUM schemes when observations are exponentially distributed, Technometrics 27 (2), 145–150, 1985.
  • [44] Z. Wu, J. Jiao and Z. He, A control scheme for monitoring the frequency and magnitude of an event, Int. J. Prod. Res. 47 (11), 2887–2902, 2009.
  • [45] Y. Xie, M. Xie and T.N. Goh, Two MEWMA charts for Gumbel’s bivariate exponential distribution, J. Qual. Technol. 43 (1), 50–65, 2011.
  • [46] M. Xie, T.N. Goh and P. Ranjan, Some effective control chart procedures for reliability monitoring, Reliab. Eng. Syst. Saf. 77 (2), 143–150, 2002.
  • [47] F. Xie, J. Sun, P. Castagliola, X. Hu and A. Tang, A multivariate CUSUM control chart for monitoring Gumbel’s bivariate exponential data, Qual. Reliab. Eng. Int. 37 (1), 10–33, 2021.
  • [48] F. Xie, A. Mukherjee, J. Sun, A. Tang and X. Hu, A synthetic multivariate exponentially weighted moving average scheme for monitoring of bivariate gamma distributed processes, Qual. Reliab. Eng. Int. 38 (2), 848–876, 2022.
  • [49] S. Xu and D.R. Jeske, Weighted EWMA charts for monitoring type I censored Weibull lifetimes, J. Qual. Technol. 50 (2), 220–230, 2018.
  • [50] L. Xue, L. An, S. Feng, Y. Liu, H. Wu and Q. Wang, A nonparametric adaptive EWMA control chart for monitoring multivariate time-between-events and amplitude data, Comput. Ind. Eng. 190, 110250, 2024.
  • [51] C. Zhang, M. Xie, J. Liu and T. Goh, A control chart for the gamma distribution as a model of time-between-events, Int. J. Prod. Res. 45(23), 5649–5666, 2007.
  • [52] I.M. Zwetsloot, T. Mahmood and W.H. Woodall, Multivariate time-between-events monitoring: an overview and some overlooked underlying complexities, Qual. Eng. 33 (1), 13–25, 2020.
  • [53] I.M. Zwetsloot, T. Mahmood, F.M. Taiwo and Z. Wang, A real-time monitoring approach for bivariate event data, Appl. Stoch. Models Bus. Ind. 39 (6), 789–817, 2023.
There are 53 citations in total.

Details

Primary Language English
Subjects Statistical Quality Control, Probability Theory
Journal Section Research Article
Authors

Ayesha Talib 0009-0001-3398-8532

Sajid Ali 0000-0003-4868-7932

Ismail Shah 0000-0001-5005-6991

Project Number NA
Submission Date May 25, 2025
Acceptance Date October 23, 2025
Early Pub Date November 4, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 54 Issue: 6

Cite

APA Talib, A., Ali, S., & Shah, I. (2025). A new MCUSUM chart for Gumbel’s bivariate Pareto distribution. Hacettepe Journal of Mathematics and Statistics, 54(6), 2426-2462. https://doi.org/10.15672/hujms.1705940
AMA Talib A, Ali S, Shah I. A new MCUSUM chart for Gumbel’s bivariate Pareto distribution. Hacettepe Journal of Mathematics and Statistics. December 2025;54(6):2426-2462. doi:10.15672/hujms.1705940
Chicago Talib, Ayesha, Sajid Ali, and Ismail Shah. “A New MCUSUM Chart for Gumbel’s Bivariate Pareto Distribution”. Hacettepe Journal of Mathematics and Statistics 54, no. 6 (December 2025): 2426-62. https://doi.org/10.15672/hujms.1705940.
EndNote Talib A, Ali S, Shah I (December 1, 2025) A new MCUSUM chart for Gumbel’s bivariate Pareto distribution. Hacettepe Journal of Mathematics and Statistics 54 6 2426–2462.
IEEE A. Talib, S. Ali, and I. Shah, “A new MCUSUM chart for Gumbel’s bivariate Pareto distribution”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, pp. 2426–2462, 2025, doi: 10.15672/hujms.1705940.
ISNAD Talib, Ayesha et al. “A New MCUSUM Chart for Gumbel’s Bivariate Pareto Distribution”. Hacettepe Journal of Mathematics and Statistics 54/6 (December2025), 2426-2462. https://doi.org/10.15672/hujms.1705940.
JAMA Talib A, Ali S, Shah I. A new MCUSUM chart for Gumbel’s bivariate Pareto distribution. Hacettepe Journal of Mathematics and Statistics. 2025;54:2426–2462.
MLA Talib, Ayesha et al. “A New MCUSUM Chart for Gumbel’s Bivariate Pareto Distribution”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, 2025, pp. 2426-62, doi:10.15672/hujms.1705940.
Vancouver Talib A, Ali S, Shah I. A new MCUSUM chart for Gumbel’s bivariate Pareto distribution. Hacettepe Journal of Mathematics and Statistics. 2025;54(6):2426-62.