Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 6, 2543 - 2566, 30.12.2025
https://doi.org/10.15672/hujms.1707784

Abstract

References

  • [1] R. Al-Aqtash, C. Lee and F. Famoye, Gumbel-weibull distribution: Properties and applications, J. Mod. Appl. Stat. Methods 13 (2), 201255, 2014.
  • [2] R. Al-Aqtash, F. Famoye and C. Lee, On Generating a New Family of Distributions using the Logit Function, J. Probab. Stat. Sci. 13 (1), 135152, 2015.
  • [3] M. Aldeni, F. Famoye and C. Lee, A Generalized Family of Lifetime Distributions and Survival Models, J. Mod. Appl. Stat. Methods 18 (2), eP2944, 2020.
  • [4] A. Aljarrah, C. Lee and F. Famoye, On generating T-X family of distributions using the quantile function, J. Stat. Distrib. Appl. 1 (2), 117, 2014.
  • [5] A. Alzaatreh, C. Lee and F. Famoye, A new method for generating families of continuous distributions, Metron 71 (1), 6379, 2013.
  • [6] A. Alzaghal and M. Aldeni, A Versatile Family of Generalized Log-logistic Distributions: Bimodality, Regression, and Applications, Hacet. J. Math. Stat. 51 (3), 857881, 2022.
  • [7] A. Alzaghal, M. Aldeni and R. Al-Aqtash, A New Class of Exponentiated Exponential Distributions: Bimodality, Regression, and Application, J. Stat. Theory Pract. 17, 52, 2023.
  • [8] A. Alzaghal and D. Hamed, New Families of Generalized Lomax Distributions: Properties and Applications, Int. J. Stat. Probab. 8 (6), 151, 2019.
  • [9] M. Amini, S. MirMostafaee and J. Ahmadi, Log-gamma-generated Families of Distributions, Statistics 48 (4), 913932, 2014.
  • [10] T. Andrade, H. Rodrigues, M. Bourguignon and G. Cordeiro, The Exponentiated Generalized Gumbel Distribution, Rev. Colomb. Estad. 38 (1), 123143, 2015.
  • [11] G. M. Cordeiro and M. de Castro, A New Family of Generalized Distributions, J. Stat. Comput. Simul. 81 (7), 883898, 2011.
  • [12] G. M. Cordeiro, E. M. Ortega and D. C. da Cunha, The exponentiated generalized class of distributions, J. Data Sci. 11 (1), 127, 2013.
  • [13] D. Deka, B. Das and B. K. Baruah, Transmuted Exponentiated Gumbel Distribution and its Application to Water Quality Data, Pak. J. Stat. Oper. Res. 13 (1), 115126, 2017.
  • [14] S. Dey, E. Raheem, S. Mukherjee and H. K. T. Ng, Two Parameter Exponentiated Gumbel Distribution: Properties and Estimation with Flood Data Example, J. Stat. Manag. Syst. 20 (2), 197233, 2017.
  • [15] N. Eugene, C. Lee and F. Famoye, Beta-normal distribution and its applications, Comm. Statist. Theory Methods 31 (4), 497512, 2002.
  • [16] G. Gholami, A. Pourdarvish, S. M. T. MirMostafaee, M. Alizadeh and A. N. Nashi, On The Gamma Gumbel Distribution, Appl. Math. E-Notes 20, 142154, 2020.
  • [17] Y. M. Gómez, H. Bolfarine and H. W. Gómez, Gumbel Distribution with Heavy Tails and Applications to Environmental Data, Math. Comput. Simul. 157, 115129, 2019.
  • [18] E. J. Gumbel, Statistics of Extremes, Columbia Univ. Press, New York, 1958.
  • [19] R. C. Gupta, P. L. Gupta and R. D. Gupta, Modeling Failure Time Data by Lehman Alternatives, Commun. Stat. Theory Methods 27 (4), 887904, 1998.
  • [20] J. Gupta, M. Garg and M. Gupta, The Lomax-Gumbel Distribution, Palest. J. Math. 5 (1), 3542, 2016.
  • [21] D. Hamed, F. Famoye and C. Lee, On Families of Generalized Pareto Distributions: Properties and Applications, J. Data Sci. 16 (2), 377396, 2018.
  • [22] D. Hamed and A. Alzaghal, New class of Lindley Distributions: Properties and Applications, J. Stat. Distrib. Appl. 8 (1), 122, 2021.
  • [23] W. Härdle, Smoothing Techniques with Implementation in S, Springer-Verlag, New York, 1991.
  • [24] N. L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, Wiley 2, 1995.
  • [25] M. C. Jones, Kumaraswamy’s Distribution: A beta-type Distribution with some Tractability Advantages, Stat. Methodol. 6 (1), 7081, 2008.
  • [26] J. P. Klein and M. L. Moeschberger, Semiparametric Proportional Hazards Regression with Fixed Covariates, In: Survival Anal. Stat. Biol. Health, Springer, New York, 229268, 1997.
  • [27] S. Kotz and S. Nadarajah, Extreme Value Distributions: Theory and Applications, World Sci., 2000.
  • [28] P. Kumaraswamy, A Generalized Probability Density Function for Double-bounded Random Processes, J. Hydrol. 46 (12), 7988, 1980.
  • [29] S. Nadarajah and S. Kotz, The Beta Exponential Distribution, Reliab. Eng. Syst. Saf. 91 (6), 689697, 2006.
  • [30] S. Nadarajah and S. Kotz, The Beta Gumbel Distribution, Math. Probl. Eng. 2004 (4), 323332, 2004.
  • [31] J. K. Nelson and S. Azizi-Ghannad, Measures and Technologies to Enhance the Insulation Condition Monitoring of Large Electrical Machines, IEEE Trans. Dielectr. Electr. Insul. 11 (1), 102112, 2004.
  • [32] I. E. Okorie, A. C. Akpanta and J. Ohakwe, The Exponentiated Gumbel type-II Distribution: Properties and Application, Int. J. Math. Math. Sci., Article ID 5898356, 2016.
  • [33] B. Oseni and H. Okasha, Gumbel-Geometric Distribution: Properties and Applications, Gazi Univ. J. Sci. 33 (4), 925941, 2020.
  • [34] C. Otiniano, B. Paiva, R. Vila and M. Bourguignon, A Bimodal Model for Extremes Data, Environ. Ecol. Stat. 30, 261288, 2023.
  • [35] C. Otiniano, R. Vila, P. Brom and M. Bourguignon, On the bimodal Gumbel model with application to environmental data, Austrian J. Stat. 52 (2), 4565, 2023.

New families of the Gumbel distribution: Bimodality, regression, and applications

Year 2025, Volume: 54 Issue: 6, 2543 - 2566, 30.12.2025
https://doi.org/10.15672/hujms.1707784

Abstract

This paper proposes a new generalization of the univariate Gumbel distribution between theory and application. With only one scale parameter and one location parameter, the Gumbel distribution is known to model many real-world applications related to extreme weather conditions, engineering, and more. Because of its importance, statisticians are constantly looking to increase its flexibility and applicability by using it as a base distribution in many generalization methods. The first part of this paper presents a list of some of the most well-known recent Gumbel generalizations, based on different generalization techniques. In the second part, we employ theoretical principles to introduce a new generalization of the Gumbel distribution using the $T$-$R\{Y\}$ framework. In the application section, two real-life data sets are used to compare the goodness of fit of our new generalization to that of competitive distributions in modeling unimodal and bimodal data. Lastly, a regression model with censored data is presented for one of the members of the new generalization.

Supporting Institution

The first author gratefully acknowledges the support received from the Department of Mathematics at the State University of New York at Farmingdale (SUNY-FSC) during the summer.

References

  • [1] R. Al-Aqtash, C. Lee and F. Famoye, Gumbel-weibull distribution: Properties and applications, J. Mod. Appl. Stat. Methods 13 (2), 201255, 2014.
  • [2] R. Al-Aqtash, F. Famoye and C. Lee, On Generating a New Family of Distributions using the Logit Function, J. Probab. Stat. Sci. 13 (1), 135152, 2015.
  • [3] M. Aldeni, F. Famoye and C. Lee, A Generalized Family of Lifetime Distributions and Survival Models, J. Mod. Appl. Stat. Methods 18 (2), eP2944, 2020.
  • [4] A. Aljarrah, C. Lee and F. Famoye, On generating T-X family of distributions using the quantile function, J. Stat. Distrib. Appl. 1 (2), 117, 2014.
  • [5] A. Alzaatreh, C. Lee and F. Famoye, A new method for generating families of continuous distributions, Metron 71 (1), 6379, 2013.
  • [6] A. Alzaghal and M. Aldeni, A Versatile Family of Generalized Log-logistic Distributions: Bimodality, Regression, and Applications, Hacet. J. Math. Stat. 51 (3), 857881, 2022.
  • [7] A. Alzaghal, M. Aldeni and R. Al-Aqtash, A New Class of Exponentiated Exponential Distributions: Bimodality, Regression, and Application, J. Stat. Theory Pract. 17, 52, 2023.
  • [8] A. Alzaghal and D. Hamed, New Families of Generalized Lomax Distributions: Properties and Applications, Int. J. Stat. Probab. 8 (6), 151, 2019.
  • [9] M. Amini, S. MirMostafaee and J. Ahmadi, Log-gamma-generated Families of Distributions, Statistics 48 (4), 913932, 2014.
  • [10] T. Andrade, H. Rodrigues, M. Bourguignon and G. Cordeiro, The Exponentiated Generalized Gumbel Distribution, Rev. Colomb. Estad. 38 (1), 123143, 2015.
  • [11] G. M. Cordeiro and M. de Castro, A New Family of Generalized Distributions, J. Stat. Comput. Simul. 81 (7), 883898, 2011.
  • [12] G. M. Cordeiro, E. M. Ortega and D. C. da Cunha, The exponentiated generalized class of distributions, J. Data Sci. 11 (1), 127, 2013.
  • [13] D. Deka, B. Das and B. K. Baruah, Transmuted Exponentiated Gumbel Distribution and its Application to Water Quality Data, Pak. J. Stat. Oper. Res. 13 (1), 115126, 2017.
  • [14] S. Dey, E. Raheem, S. Mukherjee and H. K. T. Ng, Two Parameter Exponentiated Gumbel Distribution: Properties and Estimation with Flood Data Example, J. Stat. Manag. Syst. 20 (2), 197233, 2017.
  • [15] N. Eugene, C. Lee and F. Famoye, Beta-normal distribution and its applications, Comm. Statist. Theory Methods 31 (4), 497512, 2002.
  • [16] G. Gholami, A. Pourdarvish, S. M. T. MirMostafaee, M. Alizadeh and A. N. Nashi, On The Gamma Gumbel Distribution, Appl. Math. E-Notes 20, 142154, 2020.
  • [17] Y. M. Gómez, H. Bolfarine and H. W. Gómez, Gumbel Distribution with Heavy Tails and Applications to Environmental Data, Math. Comput. Simul. 157, 115129, 2019.
  • [18] E. J. Gumbel, Statistics of Extremes, Columbia Univ. Press, New York, 1958.
  • [19] R. C. Gupta, P. L. Gupta and R. D. Gupta, Modeling Failure Time Data by Lehman Alternatives, Commun. Stat. Theory Methods 27 (4), 887904, 1998.
  • [20] J. Gupta, M. Garg and M. Gupta, The Lomax-Gumbel Distribution, Palest. J. Math. 5 (1), 3542, 2016.
  • [21] D. Hamed, F. Famoye and C. Lee, On Families of Generalized Pareto Distributions: Properties and Applications, J. Data Sci. 16 (2), 377396, 2018.
  • [22] D. Hamed and A. Alzaghal, New class of Lindley Distributions: Properties and Applications, J. Stat. Distrib. Appl. 8 (1), 122, 2021.
  • [23] W. Härdle, Smoothing Techniques with Implementation in S, Springer-Verlag, New York, 1991.
  • [24] N. L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, Wiley 2, 1995.
  • [25] M. C. Jones, Kumaraswamy’s Distribution: A beta-type Distribution with some Tractability Advantages, Stat. Methodol. 6 (1), 7081, 2008.
  • [26] J. P. Klein and M. L. Moeschberger, Semiparametric Proportional Hazards Regression with Fixed Covariates, In: Survival Anal. Stat. Biol. Health, Springer, New York, 229268, 1997.
  • [27] S. Kotz and S. Nadarajah, Extreme Value Distributions: Theory and Applications, World Sci., 2000.
  • [28] P. Kumaraswamy, A Generalized Probability Density Function for Double-bounded Random Processes, J. Hydrol. 46 (12), 7988, 1980.
  • [29] S. Nadarajah and S. Kotz, The Beta Exponential Distribution, Reliab. Eng. Syst. Saf. 91 (6), 689697, 2006.
  • [30] S. Nadarajah and S. Kotz, The Beta Gumbel Distribution, Math. Probl. Eng. 2004 (4), 323332, 2004.
  • [31] J. K. Nelson and S. Azizi-Ghannad, Measures and Technologies to Enhance the Insulation Condition Monitoring of Large Electrical Machines, IEEE Trans. Dielectr. Electr. Insul. 11 (1), 102112, 2004.
  • [32] I. E. Okorie, A. C. Akpanta and J. Ohakwe, The Exponentiated Gumbel type-II Distribution: Properties and Application, Int. J. Math. Math. Sci., Article ID 5898356, 2016.
  • [33] B. Oseni and H. Okasha, Gumbel-Geometric Distribution: Properties and Applications, Gazi Univ. J. Sci. 33 (4), 925941, 2020.
  • [34] C. Otiniano, B. Paiva, R. Vila and M. Bourguignon, A Bimodal Model for Extremes Data, Environ. Ecol. Stat. 30, 261288, 2023.
  • [35] C. Otiniano, R. Vila, P. Brom and M. Bourguignon, On the bimodal Gumbel model with application to environmental data, Austrian J. Stat. 52 (2), 4565, 2023.
There are 35 citations in total.

Details

Primary Language English
Subjects Statistical Theory, Probability Theory, Statistics (Other)
Journal Section Research Article
Authors

Ahmad Alzaghal 0000-0002-2175-6275

Mahmoud Aldenı 0000-0001-9899-862X

Duha Hamed 0000-0003-4133-5248

Submission Date May 29, 2025
Acceptance Date November 27, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 54 Issue: 6

Cite

APA Alzaghal, A., Aldenı, M., & Hamed, D. (2025). New families of the Gumbel distribution: Bimodality, regression, and applications. Hacettepe Journal of Mathematics and Statistics, 54(6), 2543-2566. https://doi.org/10.15672/hujms.1707784
AMA Alzaghal A, Aldenı M, Hamed D. New families of the Gumbel distribution: Bimodality, regression, and applications. Hacettepe Journal of Mathematics and Statistics. December 2025;54(6):2543-2566. doi:10.15672/hujms.1707784
Chicago Alzaghal, Ahmad, Mahmoud Aldenı, and Duha Hamed. “New Families of the Gumbel Distribution: Bimodality, Regression, and Applications”. Hacettepe Journal of Mathematics and Statistics 54, no. 6 (December 2025): 2543-66. https://doi.org/10.15672/hujms.1707784.
EndNote Alzaghal A, Aldenı M, Hamed D (December 1, 2025) New families of the Gumbel distribution: Bimodality, regression, and applications. Hacettepe Journal of Mathematics and Statistics 54 6 2543–2566.
IEEE A. Alzaghal, M. Aldenı, and D. Hamed, “New families of the Gumbel distribution: Bimodality, regression, and applications”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, pp. 2543–2566, 2025, doi: 10.15672/hujms.1707784.
ISNAD Alzaghal, Ahmad et al. “New Families of the Gumbel Distribution: Bimodality, Regression, and Applications”. Hacettepe Journal of Mathematics and Statistics 54/6 (December2025), 2543-2566. https://doi.org/10.15672/hujms.1707784.
JAMA Alzaghal A, Aldenı M, Hamed D. New families of the Gumbel distribution: Bimodality, regression, and applications. Hacettepe Journal of Mathematics and Statistics. 2025;54:2543–2566.
MLA Alzaghal, Ahmad et al. “New Families of the Gumbel Distribution: Bimodality, Regression, and Applications”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, 2025, pp. 2543-66, doi:10.15672/hujms.1707784.
Vancouver Alzaghal A, Aldenı M, Hamed D. New families of the Gumbel distribution: Bimodality, regression, and applications. Hacettepe Journal of Mathematics and Statistics. 2025;54(6):2543-66.