Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 6, 2483 - 2505, 30.12.2025

Abstract

Project Number

TUFT0058/2568

References

  • [1] A. Akinsete, F. Famoye and C. Lee, The beta-Pareto distribution, Stat. 42, 547-563, 2008.
  • [2] A.I. Al-Omari, K. Aidi and N. Seddik-Ameur, A two-parameter Rani distribution: Estimation and tests for right censoring data with an application, Pak. J. Stat. Oper. Res. 17 (4), 1037–1049, 2021.
  • [3] O. Al-Ta’ani and M.M. Gharaibeh, Ola distribution: A new one parameter model with applications to engineering and COVID-19 data, Appl. Math. Inf. Sci. 17 (2), 243-252, 2023.
  • [4] F. Bittmann, Bootstrapping: An Integrated Approach with Python and Stata, De Gruyter Oldenbourg, Munich, 2021.
  • [5] W. Bodhisuwan, N. Nanuwong and C. Pudprommarat, Parameter estimation for the length biased Beta-Pareto distribution and application, Walailak J. 13 (5), 301-315, 2016.
  • [6] G. Casella and R.L. Berger, Statistical Inference, 3rd ed., Cambridge University Press, 2021.
  • [7] A.C. Davison and D.V. Hinkley, Bootstrap Methods and Their Application, Cambridge University Press, Cambridge, 1997.
  • [8] U.V. Echebiri and J.I. Mbegbu, Juchez probability distribution: Properties and applications, Asian J. Probab. Stat. 20 (2), 56–71, 2022.
  • [9] D.F.N. Ekemezie and O.J. Obulezi, The Fav-Jerry distribution: Another member in the Lindley class with applications, Earthline J. Math. Sci. 14 (4), 793-816, 2024.
  • [10] O. Elechi, E. Okereke, I. Chukwudi, K. Chizoba and O. Wale, Iwueze’s distribution and its application, J. Appl. Math. Phys. 10 (12), 3783-3803, 2022.
  • [11] P. Feigl and M. Zelen, Estimation of exponential survival probabilities with concomitant information, Biometrics, 21 (4), 826-838, 1965.
  • [12] M. Gharaibeh, Gharaibeh distribution and its applications, J. Stat. Appl. Probab. 10 (2), 441-452, 2021.
  • [13] M. Ghitany, B. Atieh and S. Nadarajah, Lindley distribution and its applications, Math. Comput. Simul. 78 (4), 493–506, 2008.
  • [14] L. Held and D. Sabanés Bové, Likelihood and Bayesian Inference with Applications in Biology and Medicine, Springer-Verlag Heidelberg, 2020.
  • [15] A. Henningsen and O. Toomet, MaxLik: A package for maximum likelihood estimation in R, Comput. Stat. 26, 443-458, 2011.
  • [16] I.A. Iwok and B.J. Nwikpe, The Iwok-Nwikpe distribution: Statistical properties and its application, Asian J. Probab. Stat. 15 (1), 35-45, 2021.
  • [17] J. Kiusalaas, Numerical Methods in Engineering with Python 3, Cambridge University Press, Cambridge, 2013.
  • [18] J.F. Lawless, Statistical Models and Methods for Lifetime Data, John Wiley & Sons, New Jersey, 2003.
  • [19] E.T. Lee and J.W. Wang, Statistical Methods for Survival Data Analysis, John Wiley & Sons, New York, 2003.
  • [20] J.S. Marron and M.P. Wand, Exact Mean Integrated Squared Error, Ann. Statist. 20 (2), 712-736, 1992.
  • [21] T. Mussie and R. Shanker, A two-parameter Sujatha distribution, Biom. Biostat. Int. J. 7 (3), 188–197, 2018.
  • [22] A.W. Nwry, H.M. Kareem, R.B. Ibrahim and S.M. Mohammed, Comparison between bisection, Newton, and secant methods for determining the root of the non-linear equation using MATLAB, Turk. J. Comput. Math. Educ. 12 (14), 1115-1122, 2021.
  • [23] O.B. Olufemi-Ojo, S.I. Onyeagu and H.O. Obiora Ilouno, On the application of twoparameter Shanker distribution, Int. J. Innov. Sci. Res. Technol., 9 (1), 807-820, 2024.
  • [24] C. Onyekwere and O. Obulezi, Chris-Jerry distribution and its applications, Asian J. Probab. Stat. 20, 16-30, 2022.
  • [25] Y. Pawitan, In All Likelihood: Statistical Modelling and Inference Using Likelihood, Clarendon Press, Oxford, 2001.
  • [26] R.J. Rossi, Mathematical Statistics: An Introduction to Likelihood Based Inference, John Wiley & Sons, Hoboken, 2018.
  • [27] P. Schober and T.R. Vetter, Survival analysis and interpretation of time-to-event data: The tortoise and the hare, Anesthesia & Analgesia 127 (3), 792–798.
  • [28] T.A. Severini, Likelihood Methods in Statistics, Oxford University Press, Oxford, 2000.
  • [29] R. Shanker, S. Sharma and R. Shanker, A two-parameter Lindley distribution for modeling waiting and survival times data, Appl. Math. 4 (2), 363-368, 2013.
  • [30] R. Shanker, Shanker distribution and its applications, Int. J. Stat. Appl. 5 (6), 338- 348, 2015a.
  • [31] R. Shanker, Akash distribution and its applications, Int. J. Probab. Stat. 4 (3), 65-75, 2015b.
  • [32] R. Shanker, Aradhana distribution and its applications, Int. J. Stat. Appl. 6 (1), 23–4, 2016a.
  • [33] R. Shanker, Amarendra distribution and its applications, Am. J. Math. Stat. 6 (1), 44-56, 2016b.
  • [34] R. Shanker, Sujatha distribution and its applications, Stat. Transit. New Ser. 17, 391-410, 2016c.
  • [35] R. Shanker, K.K. Shukla, R. Shanker and T.A. Leonida, A three-parameter Lindley distribution, Am. J. Math. Stat. 7 (1), 15-26, 2017.
  • [36] R. Shanker, Rani distribution and its application, Biom. Biostat. Int. J. 6 (1), 256-265, 2017a.
  • [37] R. Shanker, Akshaya distribution and its application, Am. J. Math. Stat. 7 (2), 51-59, 2017b.
  • [38] R. Shanker, Suja distribution and its application, Int. J. Probab. Stat. 6 (2), 11-19, 2017c.
  • [39] R. Shanker, K.K. Shukla, Ishita distribution and its application to model lifetime data, Biom. Biostat. Int. J. 5 (2), 1-9, 2017.
  • [40] R. Shanker and K. Shukla, Adya distribution with properties and application, Biom. Biostat. Int. J. 10, 81-88, 2021.
  • [41] R. Shanker, Komal distribution with properties and application in survival analysis, Biom. Biostat. Int. J. 12 (2), 40-44, 2023a.
  • [42] R. Shanker, Pratibha distribution with properties and application, Biom. Biostat. Int. J. 13, 136-142, 2023b.
  • [43] R. Shanker, N.K. Soni, R. Shanker, M. Ray, H.R. Prodhani, A two-parameter Aradhana distribution with applications to reliability engineering, Reliab. Theory Appl. 19 (3), 757-774, 2024.
  • [44] D.H. Shraa and A.I. Al-Omari, Darna distribution: Properties and application, Electron. J. Appl. Stat. Anal. 12 (2), 520-541, 2019.
  • [45] K.K. Shukla, Pranav distribution with properties and its applications, Biom. Biostat. Int. J. 7 (3), 244-254, 2018.
  • [46] K.K. Shukla, Prakaamy distribution and its properties and applications, Biom. Biostat. Int. J. 7 (3), 244-254, 2018.
  • [47] X. Ying, An Overview of Overfitting and its Solutions, J. Phys. Conf. Ser. 1168, 2019.

Parameter estimation for Fav-Jerry distribution: Likelihood and bootstrap confidence intervals and their applications

Year 2025, Volume: 54 Issue: 6, 2483 - 2505, 30.12.2025

Abstract

This study developed and evaluated three methods for constructing confidence intervals for the parameter of the Fav-Jerry distribution, which is commonly used in lifetime data analysis. The methods include the likelihood-based confidence interval, the bootstrap-t confidence interval, and the bias-corrected and accelerated bootstrap confidence interval. Their performance was assessed through both simulation and real data analysis. The evaluation focused on empirical coverage probability and average width under various settings. The simulation results showed that the likelihood-based confidence interval consistently achieved empirical coverage probabilities close to the nominal 0.95 level in most cases. For small sample sizes, the bootstrap-t and bias-corrected and accelerated bootstrap methods tended to produce lower empirical coverage probabilities, but their performance improved as the sample size increased. Parameter values also affected the results: at lower values, all methods performed well, with the likelihood-based method maintaining an empirical coverage probability near 0.95. At higher values and smaller sample sizes, however, the bootstrap-t and bias-corrected and accelerated methods showed reduced coverage. The usefulness of these methods was further demonstrated through their application to flood peak excesses from the Wheaton River and to the survival times of patients with acute myelogenous leukemia. The real data results supported the simulation findings, highlighting the reliability and practical value of the proposed confidence interval methods. This study not only offers practical inference tools for the Fav-Jerry distribution but also establishes a foundation for future advancements in flexible lifetime modeling and bootstrap-based inference.

Supporting Institution

This work was supported by the Thammasat University Research Fund, Contract No. TUFT0058/2568.

Project Number

TUFT0058/2568

References

  • [1] A. Akinsete, F. Famoye and C. Lee, The beta-Pareto distribution, Stat. 42, 547-563, 2008.
  • [2] A.I. Al-Omari, K. Aidi and N. Seddik-Ameur, A two-parameter Rani distribution: Estimation and tests for right censoring data with an application, Pak. J. Stat. Oper. Res. 17 (4), 1037–1049, 2021.
  • [3] O. Al-Ta’ani and M.M. Gharaibeh, Ola distribution: A new one parameter model with applications to engineering and COVID-19 data, Appl. Math. Inf. Sci. 17 (2), 243-252, 2023.
  • [4] F. Bittmann, Bootstrapping: An Integrated Approach with Python and Stata, De Gruyter Oldenbourg, Munich, 2021.
  • [5] W. Bodhisuwan, N. Nanuwong and C. Pudprommarat, Parameter estimation for the length biased Beta-Pareto distribution and application, Walailak J. 13 (5), 301-315, 2016.
  • [6] G. Casella and R.L. Berger, Statistical Inference, 3rd ed., Cambridge University Press, 2021.
  • [7] A.C. Davison and D.V. Hinkley, Bootstrap Methods and Their Application, Cambridge University Press, Cambridge, 1997.
  • [8] U.V. Echebiri and J.I. Mbegbu, Juchez probability distribution: Properties and applications, Asian J. Probab. Stat. 20 (2), 56–71, 2022.
  • [9] D.F.N. Ekemezie and O.J. Obulezi, The Fav-Jerry distribution: Another member in the Lindley class with applications, Earthline J. Math. Sci. 14 (4), 793-816, 2024.
  • [10] O. Elechi, E. Okereke, I. Chukwudi, K. Chizoba and O. Wale, Iwueze’s distribution and its application, J. Appl. Math. Phys. 10 (12), 3783-3803, 2022.
  • [11] P. Feigl and M. Zelen, Estimation of exponential survival probabilities with concomitant information, Biometrics, 21 (4), 826-838, 1965.
  • [12] M. Gharaibeh, Gharaibeh distribution and its applications, J. Stat. Appl. Probab. 10 (2), 441-452, 2021.
  • [13] M. Ghitany, B. Atieh and S. Nadarajah, Lindley distribution and its applications, Math. Comput. Simul. 78 (4), 493–506, 2008.
  • [14] L. Held and D. Sabanés Bové, Likelihood and Bayesian Inference with Applications in Biology and Medicine, Springer-Verlag Heidelberg, 2020.
  • [15] A. Henningsen and O. Toomet, MaxLik: A package for maximum likelihood estimation in R, Comput. Stat. 26, 443-458, 2011.
  • [16] I.A. Iwok and B.J. Nwikpe, The Iwok-Nwikpe distribution: Statistical properties and its application, Asian J. Probab. Stat. 15 (1), 35-45, 2021.
  • [17] J. Kiusalaas, Numerical Methods in Engineering with Python 3, Cambridge University Press, Cambridge, 2013.
  • [18] J.F. Lawless, Statistical Models and Methods for Lifetime Data, John Wiley & Sons, New Jersey, 2003.
  • [19] E.T. Lee and J.W. Wang, Statistical Methods for Survival Data Analysis, John Wiley & Sons, New York, 2003.
  • [20] J.S. Marron and M.P. Wand, Exact Mean Integrated Squared Error, Ann. Statist. 20 (2), 712-736, 1992.
  • [21] T. Mussie and R. Shanker, A two-parameter Sujatha distribution, Biom. Biostat. Int. J. 7 (3), 188–197, 2018.
  • [22] A.W. Nwry, H.M. Kareem, R.B. Ibrahim and S.M. Mohammed, Comparison between bisection, Newton, and secant methods for determining the root of the non-linear equation using MATLAB, Turk. J. Comput. Math. Educ. 12 (14), 1115-1122, 2021.
  • [23] O.B. Olufemi-Ojo, S.I. Onyeagu and H.O. Obiora Ilouno, On the application of twoparameter Shanker distribution, Int. J. Innov. Sci. Res. Technol., 9 (1), 807-820, 2024.
  • [24] C. Onyekwere and O. Obulezi, Chris-Jerry distribution and its applications, Asian J. Probab. Stat. 20, 16-30, 2022.
  • [25] Y. Pawitan, In All Likelihood: Statistical Modelling and Inference Using Likelihood, Clarendon Press, Oxford, 2001.
  • [26] R.J. Rossi, Mathematical Statistics: An Introduction to Likelihood Based Inference, John Wiley & Sons, Hoboken, 2018.
  • [27] P. Schober and T.R. Vetter, Survival analysis and interpretation of time-to-event data: The tortoise and the hare, Anesthesia & Analgesia 127 (3), 792–798.
  • [28] T.A. Severini, Likelihood Methods in Statistics, Oxford University Press, Oxford, 2000.
  • [29] R. Shanker, S. Sharma and R. Shanker, A two-parameter Lindley distribution for modeling waiting and survival times data, Appl. Math. 4 (2), 363-368, 2013.
  • [30] R. Shanker, Shanker distribution and its applications, Int. J. Stat. Appl. 5 (6), 338- 348, 2015a.
  • [31] R. Shanker, Akash distribution and its applications, Int. J. Probab. Stat. 4 (3), 65-75, 2015b.
  • [32] R. Shanker, Aradhana distribution and its applications, Int. J. Stat. Appl. 6 (1), 23–4, 2016a.
  • [33] R. Shanker, Amarendra distribution and its applications, Am. J. Math. Stat. 6 (1), 44-56, 2016b.
  • [34] R. Shanker, Sujatha distribution and its applications, Stat. Transit. New Ser. 17, 391-410, 2016c.
  • [35] R. Shanker, K.K. Shukla, R. Shanker and T.A. Leonida, A three-parameter Lindley distribution, Am. J. Math. Stat. 7 (1), 15-26, 2017.
  • [36] R. Shanker, Rani distribution and its application, Biom. Biostat. Int. J. 6 (1), 256-265, 2017a.
  • [37] R. Shanker, Akshaya distribution and its application, Am. J. Math. Stat. 7 (2), 51-59, 2017b.
  • [38] R. Shanker, Suja distribution and its application, Int. J. Probab. Stat. 6 (2), 11-19, 2017c.
  • [39] R. Shanker, K.K. Shukla, Ishita distribution and its application to model lifetime data, Biom. Biostat. Int. J. 5 (2), 1-9, 2017.
  • [40] R. Shanker and K. Shukla, Adya distribution with properties and application, Biom. Biostat. Int. J. 10, 81-88, 2021.
  • [41] R. Shanker, Komal distribution with properties and application in survival analysis, Biom. Biostat. Int. J. 12 (2), 40-44, 2023a.
  • [42] R. Shanker, Pratibha distribution with properties and application, Biom. Biostat. Int. J. 13, 136-142, 2023b.
  • [43] R. Shanker, N.K. Soni, R. Shanker, M. Ray, H.R. Prodhani, A two-parameter Aradhana distribution with applications to reliability engineering, Reliab. Theory Appl. 19 (3), 757-774, 2024.
  • [44] D.H. Shraa and A.I. Al-Omari, Darna distribution: Properties and application, Electron. J. Appl. Stat. Anal. 12 (2), 520-541, 2019.
  • [45] K.K. Shukla, Pranav distribution with properties and its applications, Biom. Biostat. Int. J. 7 (3), 244-254, 2018.
  • [46] K.K. Shukla, Prakaamy distribution and its properties and applications, Biom. Biostat. Int. J. 7 (3), 244-254, 2018.
  • [47] X. Ying, An Overview of Overfitting and its Solutions, J. Phys. Conf. Ser. 1168, 2019.
There are 47 citations in total.

Details

Primary Language English
Subjects Statistical Theory, Probability Theory
Journal Section Research Article
Authors

Nichayaporn Saengrawee This is me 0000-0000-0000-0000

Wararit Panichkitkosolkul 0000-0001-8315-8185

Project Number TUFT0058/2568
Submission Date July 15, 2025
Acceptance Date November 19, 2025
Early Pub Date December 13, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 54 Issue: 6

Cite

APA Saengrawee, N., & Panichkitkosolkul, W. (2025). Parameter estimation for Fav-Jerry distribution: Likelihood and bootstrap confidence intervals and their applications. Hacettepe Journal of Mathematics and Statistics, 54(6), 2483-2505. https://doi.org/10.15672/hujms.1740760
AMA Saengrawee N, Panichkitkosolkul W. Parameter estimation for Fav-Jerry distribution: Likelihood and bootstrap confidence intervals and their applications. Hacettepe Journal of Mathematics and Statistics. December 2025;54(6):2483-2505. doi:10.15672/hujms.1740760
Chicago Saengrawee, Nichayaporn, and Wararit Panichkitkosolkul. “Parameter Estimation for Fav-Jerry Distribution: Likelihood and Bootstrap Confidence Intervals and Their Applications”. Hacettepe Journal of Mathematics and Statistics 54, no. 6 (December 2025): 2483-2505. https://doi.org/10.15672/hujms.1740760.
EndNote Saengrawee N, Panichkitkosolkul W (December 1, 2025) Parameter estimation for Fav-Jerry distribution: Likelihood and bootstrap confidence intervals and their applications. Hacettepe Journal of Mathematics and Statistics 54 6 2483–2505.
IEEE N. Saengrawee and W. Panichkitkosolkul, “Parameter estimation for Fav-Jerry distribution: Likelihood and bootstrap confidence intervals and their applications”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, pp. 2483–2505, 2025, doi: 10.15672/hujms.1740760.
ISNAD Saengrawee, Nichayaporn - Panichkitkosolkul, Wararit. “Parameter Estimation for Fav-Jerry Distribution: Likelihood and Bootstrap Confidence Intervals and Their Applications”. Hacettepe Journal of Mathematics and Statistics 54/6 (December2025), 2483-2505. https://doi.org/10.15672/hujms.1740760.
JAMA Saengrawee N, Panichkitkosolkul W. Parameter estimation for Fav-Jerry distribution: Likelihood and bootstrap confidence intervals and their applications. Hacettepe Journal of Mathematics and Statistics. 2025;54:2483–2505.
MLA Saengrawee, Nichayaporn and Wararit Panichkitkosolkul. “Parameter Estimation for Fav-Jerry Distribution: Likelihood and Bootstrap Confidence Intervals and Their Applications”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, 2025, pp. 2483-05, doi:10.15672/hujms.1740760.
Vancouver Saengrawee N, Panichkitkosolkul W. Parameter estimation for Fav-Jerry distribution: Likelihood and bootstrap confidence intervals and their applications. Hacettepe Journal of Mathematics and Statistics. 2025;54(6):2483-505.