Research Article
BibTex RIS Cite

Year 2018, Volume: 47 Issue: 5, 1120 - 1127, 16.10.2018

Abstract

References

  • Gorbachuk, V.I and Gorbachuk, M.I. Boundary Value Problems for Operator Differential Equations, Kluwer Academic Publisher, Dordrecht, 1991.
  • Hörmander, L. On the Theory of General Partial Differential Operators, Acta Math. 94 (1), 161-248, 1955.
  • Kato, T. Perturbation Theory for Linear Operators, Springer-Verlag Inc., New York, 1966, 592 pp.
  • Levchuk, V.V. Smooth Maximally Dissipative Boundary-Value Problems for a Parabolic Equation in a Hilbert Space, Ukrainian Math. J. 35 (4), 502-507, 1983.

Maximal accretive singular quasi-differential operators

Year 2018, Volume: 47 Issue: 5, 1120 - 1127, 16.10.2018

Abstract

In this paper firstly all maximal accretive extensions of the minimal operator generated by a first order linear singular quasi-differential expression in the weighted Hilbert space of vector-functions on right semi-axis are described. Later on, the structure of spectrum set of these extensions has been researched.

References

  • Gorbachuk, V.I and Gorbachuk, M.I. Boundary Value Problems for Operator Differential Equations, Kluwer Academic Publisher, Dordrecht, 1991.
  • Hörmander, L. On the Theory of General Partial Differential Operators, Acta Math. 94 (1), 161-248, 1955.
  • Kato, T. Perturbation Theory for Linear Operators, Springer-Verlag Inc., New York, 1966, 592 pp.
  • Levchuk, V.V. Smooth Maximally Dissipative Boundary-Value Problems for a Parabolic Equation in a Hilbert Space, Ukrainian Math. J. 35 (4), 502-507, 1983.
There are 4 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Pembe İpek

Zameddin İ. İsmailov

Publication Date October 16, 2018
Published in Issue Year 2018 Volume: 47 Issue: 5

Cite

APA İpek, P., & İsmailov, Z. İ. (2018). Maximal accretive singular quasi-differential operators. Hacettepe Journal of Mathematics and Statistics, 47(5), 1120-1127. https://izlik.org/JA77HB99AU
AMA 1.İpek P, İsmailov Zİ. Maximal accretive singular quasi-differential operators. Hacettepe Journal of Mathematics and Statistics. 2018;47(5):1120-1127. https://izlik.org/JA77HB99AU
Chicago İpek, Pembe, and Zameddin İ. İsmailov. 2018. “Maximal Accretive Singular Quasi-Differential Operators”. Hacettepe Journal of Mathematics and Statistics 47 (5): 1120-27. https://izlik.org/JA77HB99AU.
EndNote İpek P, İsmailov Zİ (October 1, 2018) Maximal accretive singular quasi-differential operators. Hacettepe Journal of Mathematics and Statistics 47 5 1120–1127.
IEEE [1]P. İpek and Z. İ. İsmailov, “Maximal accretive singular quasi-differential operators”, Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 5, pp. 1120–1127, Oct. 2018, [Online]. Available: https://izlik.org/JA77HB99AU
ISNAD İpek, Pembe - İsmailov, Zameddin İ. “Maximal Accretive Singular Quasi-Differential Operators”. Hacettepe Journal of Mathematics and Statistics 47/5 (October 1, 2018): 1120-1127. https://izlik.org/JA77HB99AU.
JAMA 1.İpek P, İsmailov Zİ. Maximal accretive singular quasi-differential operators. Hacettepe Journal of Mathematics and Statistics. 2018;47:1120–1127.
MLA İpek, Pembe, and Zameddin İ. İsmailov. “Maximal Accretive Singular Quasi-Differential Operators”. Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 5, Oct. 2018, pp. 1120-7, https://izlik.org/JA77HB99AU.
Vancouver 1.İpek P, İsmailov Zİ. Maximal accretive singular quasi-differential operators. Hacettepe Journal of Mathematics and Statistics [Internet]. 2018 Oct. 1;47(5):1120-7. Available from: https://izlik.org/JA77HB99AU