Research Article
BibTex RIS Cite
Year 2019, , 1767 - 1777, 08.12.2019
https://doi.org/10.15672/HJMS.2018.636

Abstract

References

  • [1] G. Beer, The structure of extended Real-valued metric spaces, Set-Valued Var. Anal 21 (4), 591–602, 2013.
  • [2] P. Fletcherand and W.F. Lindgren, Quasi-uniform spaces (Dekker, 1982).
  • [3] S.T. Hu, Boundedness in a topological space, J. Math. Pures Appl. 228, 287–320, 1949.
  • [4] K. Kemajou, H.P. Künzi and O. Olela Otafudu, The Isbell-hull of a di-space, Topol Appl. 159 (9), 2463–2475, 2012.
  • [5] H.P. Künzi, An introduction to quasi-uniform spaces, Contemp. Math. 486, 239–304, 2009.
  • [6] H.P. Künzi and C. Makitu Kivuvu, A double completion for an arbitrary T0-quasimetric space, J. Log. Algebr. Program. 76 (2), 251–269, 2008.
  • [7] H.P. Künzi and O. Olela Otafudu, q-hyperconvexity in quasipseudometric spaces and fixed point theorems, J. Funct. Spaces Appl. Art.ID 765903, 18 pp., 2012,
  • [8] M.G. Murdeshwar and K.K. Theckedath, Boundedness in a quasi-uniform space, Canad. Math. Bull. 13, 367–370, 1970.
  • [9] A. Piekosz and E. Wajch, Quasi-metrizability of bornological biuniverses in ZF, J. Convex Anal. 22 (4), 1041–1060, 2015.

On bornology of extended quasi-metric spaces

Year 2019, , 1767 - 1777, 08.12.2019
https://doi.org/10.15672/HJMS.2018.636

Abstract

Beer studied the structure of sets equipped with the extended metrics with a focus on bornologies. In the paper [A. Piekosz and E. Wajch, Quazi-metrizability of bornological biuniverses inZF, J. Convex Anal. 2015], Piekosz and Wajch extended the well-known  Hu's Theorem on boundedness in a topological space (see [S.-T. Hu, Boundedness in a topological space, J. Math. Pures Appl. 1949]) to the framework of quasi-metric spaces. In this note, we continue the work of Piekosz and Wajch. We show that many results on bornology of extended metric spaces due to Beer do not use the symmetry axiom of the extended metric, with appropriate modifications they still hold in the context of extended $T_0$-quasi-metric spaces.

References

  • [1] G. Beer, The structure of extended Real-valued metric spaces, Set-Valued Var. Anal 21 (4), 591–602, 2013.
  • [2] P. Fletcherand and W.F. Lindgren, Quasi-uniform spaces (Dekker, 1982).
  • [3] S.T. Hu, Boundedness in a topological space, J. Math. Pures Appl. 228, 287–320, 1949.
  • [4] K. Kemajou, H.P. Künzi and O. Olela Otafudu, The Isbell-hull of a di-space, Topol Appl. 159 (9), 2463–2475, 2012.
  • [5] H.P. Künzi, An introduction to quasi-uniform spaces, Contemp. Math. 486, 239–304, 2009.
  • [6] H.P. Künzi and C. Makitu Kivuvu, A double completion for an arbitrary T0-quasimetric space, J. Log. Algebr. Program. 76 (2), 251–269, 2008.
  • [7] H.P. Künzi and O. Olela Otafudu, q-hyperconvexity in quasipseudometric spaces and fixed point theorems, J. Funct. Spaces Appl. Art.ID 765903, 18 pp., 2012,
  • [8] M.G. Murdeshwar and K.K. Theckedath, Boundedness in a quasi-uniform space, Canad. Math. Bull. 13, 367–370, 1970.
  • [9] A. Piekosz and E. Wajch, Quasi-metrizability of bornological biuniverses in ZF, J. Convex Anal. 22 (4), 1041–1060, 2015.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Olivier Olela Otafudu 0000-0001-9593-7899

Wilson B. Toko This is me 0000-0003-1802-8872

Danny Mukonda This is me 0000-0002-1453-0403

Publication Date December 8, 2019
Published in Issue Year 2019

Cite

APA Otafudu, O. O., Toko, W. B., & Mukonda, D. (2019). On bornology of extended quasi-metric spaces. Hacettepe Journal of Mathematics and Statistics, 48(6), 1767-1777. https://doi.org/10.15672/HJMS.2018.636
AMA Otafudu OO, Toko WB, Mukonda D. On bornology of extended quasi-metric spaces. Hacettepe Journal of Mathematics and Statistics. December 2019;48(6):1767-1777. doi:10.15672/HJMS.2018.636
Chicago Otafudu, Olivier Olela, Wilson B. Toko, and Danny Mukonda. “On Bornology of Extended Quasi-Metric Spaces”. Hacettepe Journal of Mathematics and Statistics 48, no. 6 (December 2019): 1767-77. https://doi.org/10.15672/HJMS.2018.636.
EndNote Otafudu OO, Toko WB, Mukonda D (December 1, 2019) On bornology of extended quasi-metric spaces. Hacettepe Journal of Mathematics and Statistics 48 6 1767–1777.
IEEE O. O. Otafudu, W. B. Toko, and D. Mukonda, “On bornology of extended quasi-metric spaces”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 6, pp. 1767–1777, 2019, doi: 10.15672/HJMS.2018.636.
ISNAD Otafudu, Olivier Olela et al. “On Bornology of Extended Quasi-Metric Spaces”. Hacettepe Journal of Mathematics and Statistics 48/6 (December 2019), 1767-1777. https://doi.org/10.15672/HJMS.2018.636.
JAMA Otafudu OO, Toko WB, Mukonda D. On bornology of extended quasi-metric spaces. Hacettepe Journal of Mathematics and Statistics. 2019;48:1767–1777.
MLA Otafudu, Olivier Olela et al. “On Bornology of Extended Quasi-Metric Spaces”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 6, 2019, pp. 1767-7, doi:10.15672/HJMS.2018.636.
Vancouver Otafudu OO, Toko WB, Mukonda D. On bornology of extended quasi-metric spaces. Hacettepe Journal of Mathematics and Statistics. 2019;48(6):1767-7.