Research Article
BibTex RIS Cite
Year 2019, , 1792 - 1807, 08.12.2019
https://doi.org/10.15672/HJMS.2018.638

Abstract

References

  • [1] C.E. Aull and W.J. Thron, Separation axioms between $T_0$ and $T_1$, Indag. Math. 24, 26–37, 1962.
  • [2] B. Banaschewski, Radical ideals and coherent frames, Comment. Math. Univ. Carolin. 37, 349–370, 1996.
  • [3] B. Banaschewski, Gelfand and exchange rings: their spectra in pointfree topology, Arab. J. Science and Engineering 25, 3–22, 2003.
  • [4] B. Banaschewski and A. Pultr, Variants of openness, Appl. Categ. Structures 2, 331–350, 1994.
  • [5] B. Banaschewski and A. Pultr, Pointfree aspects of the $T_D$ axiom of classical topology, Quaest. Math. 33, 369–385, 2010.
  • [6] T. Coquand and H. Lombardi, Hidden constructions in abstract algebra: Krull dimension of distributive lattices and commutative rings, in: Commutative ring theory and applications 477–499, Fez, 2001, Lecture Notes in Pure and Appl. Math., 231, Dekker, New York, 2003.
  • [7] D.E. Dobbs and M. Fontana, Classes of commutative rings characterized by Going-Up and Going-Down behavior, Rend. Sem. Mat. Univ. Padova 66, 113–127, 1982.
  • [8] D.E. Dobbs and I.J. Papick, Going down: a survey, Nieuw Arch. Wisk. 26, 255–291, 1978.
  • [9] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142, 43–60, 1969.
  • [10] P.T. Johnstone, Stone Spaces. Cambridge University Press, Cambridge, 1982.
  • [11] J. Martínez, Archimedean lattices, Algebra Universalis 3, 247–260, 1973.
  • [12] J. Martínez, Dimension in algebraic frames, Czechoslovak Math. J. 56, 437–474, 2006.
  • [13] J. Martínez, Unit and kernel systems in algebraic frames, Algebra Universalis 55, 13–43, 2006.
  • [14] J. Martínez, An innocent theorem of Banaschewski, applied to an unsuspecting theorem of De Marco, and the aftermath thereof, Forum Math. 23, 565–596, 2013.
  • [15] J. Martínez and E.R. Zenk, When an algebraic frame is regular, Algebra Universals 50, 231–257, 2003.
  • [16] S.B. Niefield and K.I. Rosenthal, Componental nuclei, in: Categorical algebra and its applications (Louvain-La-Neuve, 1987), 299–306, Lecture Notes in Math., 1348, Springer, Berlin, 1988.
  • [17] J. Picado and A. Pultr, Frames and Locales: topology without points, Frontiers in Mathematics, Springer, Basel, 2012.

First steps going down on algebraic frames

Year 2019, , 1792 - 1807, 08.12.2019
https://doi.org/10.15672/HJMS.2018.638

Abstract

We extend the ring-theoretic concept of going down  to algebraic frames and coherent maps. We then use the notion introduced to characterize algebraic frames of dimension 0 and frames of dimension at most 1. An application to rings yields a characterization of von Neumann regular rings that appears to have hitherto been overlooked. Namely, a commutative ring $A$ with identity is von Neumann regular if and only if $Ann(I)+P=A$, for every prime ideal $P$ of $A$ and any finitely generated ideal $I$ of $A$ contained in $P$.

References

  • [1] C.E. Aull and W.J. Thron, Separation axioms between $T_0$ and $T_1$, Indag. Math. 24, 26–37, 1962.
  • [2] B. Banaschewski, Radical ideals and coherent frames, Comment. Math. Univ. Carolin. 37, 349–370, 1996.
  • [3] B. Banaschewski, Gelfand and exchange rings: their spectra in pointfree topology, Arab. J. Science and Engineering 25, 3–22, 2003.
  • [4] B. Banaschewski and A. Pultr, Variants of openness, Appl. Categ. Structures 2, 331–350, 1994.
  • [5] B. Banaschewski and A. Pultr, Pointfree aspects of the $T_D$ axiom of classical topology, Quaest. Math. 33, 369–385, 2010.
  • [6] T. Coquand and H. Lombardi, Hidden constructions in abstract algebra: Krull dimension of distributive lattices and commutative rings, in: Commutative ring theory and applications 477–499, Fez, 2001, Lecture Notes in Pure and Appl. Math., 231, Dekker, New York, 2003.
  • [7] D.E. Dobbs and M. Fontana, Classes of commutative rings characterized by Going-Up and Going-Down behavior, Rend. Sem. Mat. Univ. Padova 66, 113–127, 1982.
  • [8] D.E. Dobbs and I.J. Papick, Going down: a survey, Nieuw Arch. Wisk. 26, 255–291, 1978.
  • [9] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142, 43–60, 1969.
  • [10] P.T. Johnstone, Stone Spaces. Cambridge University Press, Cambridge, 1982.
  • [11] J. Martínez, Archimedean lattices, Algebra Universalis 3, 247–260, 1973.
  • [12] J. Martínez, Dimension in algebraic frames, Czechoslovak Math. J. 56, 437–474, 2006.
  • [13] J. Martínez, Unit and kernel systems in algebraic frames, Algebra Universalis 55, 13–43, 2006.
  • [14] J. Martínez, An innocent theorem of Banaschewski, applied to an unsuspecting theorem of De Marco, and the aftermath thereof, Forum Math. 23, 565–596, 2013.
  • [15] J. Martínez and E.R. Zenk, When an algebraic frame is regular, Algebra Universals 50, 231–257, 2003.
  • [16] S.B. Niefield and K.I. Rosenthal, Componental nuclei, in: Categorical algebra and its applications (Louvain-La-Neuve, 1987), 299–306, Lecture Notes in Math., 1348, Springer, Berlin, 1988.
  • [17] J. Picado and A. Pultr, Frames and Locales: topology without points, Frontiers in Mathematics, Springer, Basel, 2012.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Themba Dube 0000-0002-2702-2192

Publication Date December 8, 2019
Published in Issue Year 2019

Cite

APA Dube, T. (2019). First steps going down on algebraic frames. Hacettepe Journal of Mathematics and Statistics, 48(6), 1792-1807. https://doi.org/10.15672/HJMS.2018.638
AMA Dube T. First steps going down on algebraic frames. Hacettepe Journal of Mathematics and Statistics. December 2019;48(6):1792-1807. doi:10.15672/HJMS.2018.638
Chicago Dube, Themba. “First Steps Going down on Algebraic Frames”. Hacettepe Journal of Mathematics and Statistics 48, no. 6 (December 2019): 1792-1807. https://doi.org/10.15672/HJMS.2018.638.
EndNote Dube T (December 1, 2019) First steps going down on algebraic frames. Hacettepe Journal of Mathematics and Statistics 48 6 1792–1807.
IEEE T. Dube, “First steps going down on algebraic frames”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 6, pp. 1792–1807, 2019, doi: 10.15672/HJMS.2018.638.
ISNAD Dube, Themba. “First Steps Going down on Algebraic Frames”. Hacettepe Journal of Mathematics and Statistics 48/6 (December 2019), 1792-1807. https://doi.org/10.15672/HJMS.2018.638.
JAMA Dube T. First steps going down on algebraic frames. Hacettepe Journal of Mathematics and Statistics. 2019;48:1792–1807.
MLA Dube, Themba. “First Steps Going down on Algebraic Frames”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 6, 2019, pp. 1792-07, doi:10.15672/HJMS.2018.638.
Vancouver Dube T. First steps going down on algebraic frames. Hacettepe Journal of Mathematics and Statistics. 2019;48(6):1792-807.