Research Article
BibTex RIS Cite

The Borel property for 4-dimensional matrices

Year 2016, Volume: 45 Issue: 2, 473 - 482, 01.04.2016

Abstract

In 1909 Borel has proved that “Almost all of the sequences of 0’s and 1’s
are Cesàro summable to 1
2
". Then Hill has generalized Borel’s result
to two dimensional matrices. In this paper we investigate the Borel
property for 4-dimensional matrices. 

References

  • Borel E., Les probabilities denombrables et leurs applications arithmetiques, Rendiconti del Circolo Matematico di Palermo, 27, 247-271, 1909.
  • Bromwich M.A., An introduction to the theory of infinite series, (Macmillan Co., London, 1942).
  • Connor J., Almost none of the sequences of 0’s and 1’s are almost convergent, Internat. J. Math. Math. Sci. 13, 775-777, 1990.
  • Crnjac M., Cunjalo F. and Miller H.I., ˘ Subsequence characterizations of statistical convergence of double sequences, Radovi Math., 12, 163-175, 2004.
  • Garreau G.A., A note on the summation of sequences of 0’s and 1’s, Annals of Mathematics, 54, 183-185, 1951.
  • Hill J.D., Summability of sequences of 0’s and 1’s, Annals of Mathematics, 46, 556-562, 1945.
  • Hill J.D., The Borel property of summability methods, Pacific J. Math., 1, 399-409, 1951.
  • Hill J.D., Remarks on the Borel property, Pacific J. Math., 4, 227-242, 1954.
  • Móricz F. and Rhoades B.E., Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc. 104, 283-294, 1988
  • Parameswaran M.R., Note on the summability of sequences of zeros and ones, Proc. Nat. Inst. Sci. India Part A 27, 129-136, 1961.
  • Pringsheim A., On the theory of double infinite sequences of numbers. (Zur theorie der zweifach unendlichen zahlenfolgen.), Math. Ann., 53, 289-321, 1900.
  • Robison G.M., Divergent double sequences and series, Trans. Amer. Math. Soc. 28, 50-73, 1926.
  • Tas E. and Orhan C., Cesàro means of subsequences of double sequences, submitted. 482
  • Visser C., The law of nought-or-one in the theory of probability, Studia Mathematica, 7, 143-149, 1938.

Year 2016, Volume: 45 Issue: 2, 473 - 482, 01.04.2016

Abstract

References

  • Borel E., Les probabilities denombrables et leurs applications arithmetiques, Rendiconti del Circolo Matematico di Palermo, 27, 247-271, 1909.
  • Bromwich M.A., An introduction to the theory of infinite series, (Macmillan Co., London, 1942).
  • Connor J., Almost none of the sequences of 0’s and 1’s are almost convergent, Internat. J. Math. Math. Sci. 13, 775-777, 1990.
  • Crnjac M., Cunjalo F. and Miller H.I., ˘ Subsequence characterizations of statistical convergence of double sequences, Radovi Math., 12, 163-175, 2004.
  • Garreau G.A., A note on the summation of sequences of 0’s and 1’s, Annals of Mathematics, 54, 183-185, 1951.
  • Hill J.D., Summability of sequences of 0’s and 1’s, Annals of Mathematics, 46, 556-562, 1945.
  • Hill J.D., The Borel property of summability methods, Pacific J. Math., 1, 399-409, 1951.
  • Hill J.D., Remarks on the Borel property, Pacific J. Math., 4, 227-242, 1954.
  • Móricz F. and Rhoades B.E., Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc. 104, 283-294, 1988
  • Parameswaran M.R., Note on the summability of sequences of zeros and ones, Proc. Nat. Inst. Sci. India Part A 27, 129-136, 1961.
  • Pringsheim A., On the theory of double infinite sequences of numbers. (Zur theorie der zweifach unendlichen zahlenfolgen.), Math. Ann., 53, 289-321, 1900.
  • Robison G.M., Divergent double sequences and series, Trans. Amer. Math. Soc. 28, 50-73, 1926.
  • Tas E. and Orhan C., Cesàro means of subsequences of double sequences, submitted. 482
  • Visser C., The law of nought-or-one in the theory of probability, Studia Mathematica, 7, 143-149, 1938.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Emre Taş

Publication Date April 1, 2016
Published in Issue Year 2016 Volume: 45 Issue: 2

Cite

APA Taş, E. (2016). The Borel property for 4-dimensional matrices. Hacettepe Journal of Mathematics and Statistics, 45(2), 473-482.
AMA Taş E. The Borel property for 4-dimensional matrices. Hacettepe Journal of Mathematics and Statistics. April 2016;45(2):473-482.
Chicago Taş, Emre. “The Borel Property for 4-Dimensional Matrices”. Hacettepe Journal of Mathematics and Statistics 45, no. 2 (April 2016): 473-82.
EndNote Taş E (April 1, 2016) The Borel property for 4-dimensional matrices. Hacettepe Journal of Mathematics and Statistics 45 2 473–482.
IEEE E. Taş, “The Borel property for 4-dimensional matrices”, Hacettepe Journal of Mathematics and Statistics, vol. 45, no. 2, pp. 473–482, 2016.
ISNAD Taş, Emre. “The Borel Property for 4-Dimensional Matrices”. Hacettepe Journal of Mathematics and Statistics 45/2 (April2016), 473-482.
JAMA Taş E. The Borel property for 4-dimensional matrices. Hacettepe Journal of Mathematics and Statistics. 2016;45:473–482.
MLA Taş, Emre. “The Borel Property for 4-Dimensional Matrices”. Hacettepe Journal of Mathematics and Statistics, vol. 45, no. 2, 2016, pp. 473-82.
Vancouver Taş E. The Borel property for 4-dimensional matrices. Hacettepe Journal of Mathematics and Statistics. 2016;45(2):473-82.