Research Article
BibTex RIS Cite
Year 2020, , 136 - 146, 06.02.2020
https://doi.org/10.15672/HJMS.2019.671

Abstract

References

  • [1] M.O. Alberton, The irregularity of a graph, Ars Combin. 46, 219–225, 1997.
  • [2] M. Baca, Labellings of two classes of convex polytopes, Util. Math. 34, 24–31, 1988.
  • [3] M. Baca, On magic labellings of convex polytopes, Ann. Discrete Math. 51, 13–16, 1992.
  • [4] S.H. Bertz, The bond graph, J. C. S. Chem. Commun. 818–820, 1981.
  • [5] B. Bollobas and P. Erdös, Graphs of extremal weights, Ars Combin. 50, 225-233, 1998.
  • [6] K.C. Das and I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52, 103–112, 2004.
  • [7] E. Estrada, L. Torres, L. Rodriguez and I. Gutman, An atom-bond connectivity index, Modelling the enthalpy of formation of alkanes, Indian J. Chem. 37, 849–855, 1998.
  • [8] G.H. Fath-Tabar, Old and new Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 65, 79–84, 2011.
  • [9] B. Grünbaum, Graduate text in mathematics convex polytopes, Springer-Verlag, New York, 2003.
  • [10] I. Gutman, Selected properties of the schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34, 1087–1089, 1994.
  • [11] I. Gutman, Edge versions of topological indices, in: Novel Molecular Structure De- scriptors - Theory and Applications II , Univ. Kragujevac, Kragujevac, 2010.
  • [12] I. Gutman and K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50, 83–92, 2004.
  • [13] I. Gutman and E. Estrada, Topological indices based on the line graph of the molec- ular graph, J. Chem. Inf. Comput. Sci. 36, 541–543, 1996.
  • [14] I. Gutman and Z. Tomovic, On the application of line graphs in quantitative structure-property studies, J. Serb. Chem. Soc. 65 (8), 577–580, 2000.
  • [15] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. Total -electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17, 535–538, 1972.
  • [16] I. Gutman, B. Furtula, A.A. Toropov and A.P. Toropova, The graph of atomic or- bitals and its basic properties. 2. Zagreb indices, MATCH Commun. Math. Comput. Chem. 53, 225–230, 2005.
  • [17] I. Gutman, B. Furtula, Z.K. Vuki´cevi´c and G. Popivoda, On Zagreb Indices and Coindices, MATCH Commun. Math. Comput. Chem. 74, 5–16, 2015.
  • [18] I. Gutman, L. Popovic, B.K. Mishra, M. Kaunar, E. Estrada and N. Guevara, Ap- plication of line graphs in physical chemistry. Predicting surface tension of alkanes, J. Serb. Chem. Soc. 62, 1025–1029, 1997.
  • [19] P. Hansen, H. Melot and I. Gutman, Variable neighborhood search for extremal graphs 12. A note on the variance of bounded degrees in graphs, MATCH Commun. Math. Comput. Chem. 54, 221–232, 2005.
  • [20] M. Imran, A.Q. Baig and A. Ahmed, Families of plane graphs with constant metric dimension, Util. Math. 88, 43–57, 2012.
  • [21] M. Imran, A.Q. Baig and M.K. Shafiq, Classes of convex polytopes with constant metric dimension, Util. Math. 90, 85-99, 2013.
  • [22] A. Iranmanesh, I. Gutman, O. Khormali and A. Mahmiani, The edge versions of the Wiener index, MATCH Comm. Math. Comput. Chem. 61, 663–672, 2009.
  • [23] M. Randic, On Characterization of Molecular Branching, J. Amer. Chem. Soc. 97, 6609–6615, 1975.
  • [24] M.F. Nadeem, S. Zafar and Z. Zahid, On certain Topological indices of the line graph of subdivision graphs, Appl. Math. Comput. 271, 790–794, 2015.
  • [25] M.F. Nadeem, S. Zafar and Z. Zahid, On Topological properties of the line graphs of subdivision graphs of certain nanostructures, Appl. Math. Comput. 273, 125–130, 2016.
  • [26] M.F. Nadeem, S. Zafar and Z. Zahid, Some Topological Indices of L(S(CNCk[n]), Punjab Univ. J. Math. (Lahore), 49 (1), 13–17, 2017.
  • [27] G.H. Shirdel, H. Rezapour and A.M. Sayadi, The hyper-Zagreb index of graph oper- ations, Iran. J. Math. Chem. 4 (2), 213–220, 2013.
  • [28] H. Van de Waterbeemd, R.E. Carter, G. Grassy, H. Kubiny, Y.C. Martin, M.S. Tutte, and P. Willet, Glossary of terms used in computational drug design, Pure Appl. Chem. 69, 1137–1152, 1997.
  • [29] D. Vukicevic and B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46, 1369–1376, 2009.
  • [30] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52, 113–118, 2004.
  • [31] B. Zhou and N. Trinajstic, On general sum-connectivity index, J. Math. Chem. 47, 210–218, 2010.

On topological properties of some convex polytopes by using line operator on their subdivisions

Year 2020, , 136 - 146, 06.02.2020
https://doi.org/10.15672/HJMS.2019.671

Abstract

In this paper, we give theoretical results for some topological indices such as Zagreb indices $M_{1}(G)$, $M_{2}(G)$, $M_{3}(G)$, $R(G)$, $M_{1}(\overline{G})$, $M_{2}(\overline{G})$, Zagreb coindices $\overline{M_{1}}(G)$, $\overline{M_{2}}(G)$, $\overline{M_{2}}(\overline{G})$ hyper-Zagreb index $HM(G)$,atom-bond connectivity index $ABC(G)$, sum connectivity index $\chi(G)$ and geometric-arithmetic connectivity index $GA(G)$, by considering $G$ as line graph of subdivision of some convex polytopes and $\overline{G}$ denotes its complement.

References

  • [1] M.O. Alberton, The irregularity of a graph, Ars Combin. 46, 219–225, 1997.
  • [2] M. Baca, Labellings of two classes of convex polytopes, Util. Math. 34, 24–31, 1988.
  • [3] M. Baca, On magic labellings of convex polytopes, Ann. Discrete Math. 51, 13–16, 1992.
  • [4] S.H. Bertz, The bond graph, J. C. S. Chem. Commun. 818–820, 1981.
  • [5] B. Bollobas and P. Erdös, Graphs of extremal weights, Ars Combin. 50, 225-233, 1998.
  • [6] K.C. Das and I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52, 103–112, 2004.
  • [7] E. Estrada, L. Torres, L. Rodriguez and I. Gutman, An atom-bond connectivity index, Modelling the enthalpy of formation of alkanes, Indian J. Chem. 37, 849–855, 1998.
  • [8] G.H. Fath-Tabar, Old and new Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 65, 79–84, 2011.
  • [9] B. Grünbaum, Graduate text in mathematics convex polytopes, Springer-Verlag, New York, 2003.
  • [10] I. Gutman, Selected properties of the schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34, 1087–1089, 1994.
  • [11] I. Gutman, Edge versions of topological indices, in: Novel Molecular Structure De- scriptors - Theory and Applications II , Univ. Kragujevac, Kragujevac, 2010.
  • [12] I. Gutman and K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50, 83–92, 2004.
  • [13] I. Gutman and E. Estrada, Topological indices based on the line graph of the molec- ular graph, J. Chem. Inf. Comput. Sci. 36, 541–543, 1996.
  • [14] I. Gutman and Z. Tomovic, On the application of line graphs in quantitative structure-property studies, J. Serb. Chem. Soc. 65 (8), 577–580, 2000.
  • [15] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. Total -electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17, 535–538, 1972.
  • [16] I. Gutman, B. Furtula, A.A. Toropov and A.P. Toropova, The graph of atomic or- bitals and its basic properties. 2. Zagreb indices, MATCH Commun. Math. Comput. Chem. 53, 225–230, 2005.
  • [17] I. Gutman, B. Furtula, Z.K. Vuki´cevi´c and G. Popivoda, On Zagreb Indices and Coindices, MATCH Commun. Math. Comput. Chem. 74, 5–16, 2015.
  • [18] I. Gutman, L. Popovic, B.K. Mishra, M. Kaunar, E. Estrada and N. Guevara, Ap- plication of line graphs in physical chemistry. Predicting surface tension of alkanes, J. Serb. Chem. Soc. 62, 1025–1029, 1997.
  • [19] P. Hansen, H. Melot and I. Gutman, Variable neighborhood search for extremal graphs 12. A note on the variance of bounded degrees in graphs, MATCH Commun. Math. Comput. Chem. 54, 221–232, 2005.
  • [20] M. Imran, A.Q. Baig and A. Ahmed, Families of plane graphs with constant metric dimension, Util. Math. 88, 43–57, 2012.
  • [21] M. Imran, A.Q. Baig and M.K. Shafiq, Classes of convex polytopes with constant metric dimension, Util. Math. 90, 85-99, 2013.
  • [22] A. Iranmanesh, I. Gutman, O. Khormali and A. Mahmiani, The edge versions of the Wiener index, MATCH Comm. Math. Comput. Chem. 61, 663–672, 2009.
  • [23] M. Randic, On Characterization of Molecular Branching, J. Amer. Chem. Soc. 97, 6609–6615, 1975.
  • [24] M.F. Nadeem, S. Zafar and Z. Zahid, On certain Topological indices of the line graph of subdivision graphs, Appl. Math. Comput. 271, 790–794, 2015.
  • [25] M.F. Nadeem, S. Zafar and Z. Zahid, On Topological properties of the line graphs of subdivision graphs of certain nanostructures, Appl. Math. Comput. 273, 125–130, 2016.
  • [26] M.F. Nadeem, S. Zafar and Z. Zahid, Some Topological Indices of L(S(CNCk[n]), Punjab Univ. J. Math. (Lahore), 49 (1), 13–17, 2017.
  • [27] G.H. Shirdel, H. Rezapour and A.M. Sayadi, The hyper-Zagreb index of graph oper- ations, Iran. J. Math. Chem. 4 (2), 213–220, 2013.
  • [28] H. Van de Waterbeemd, R.E. Carter, G. Grassy, H. Kubiny, Y.C. Martin, M.S. Tutte, and P. Willet, Glossary of terms used in computational drug design, Pure Appl. Chem. 69, 1137–1152, 1997.
  • [29] D. Vukicevic and B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46, 1369–1376, 2009.
  • [30] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52, 113–118, 2004.
  • [31] B. Zhou and N. Trinajstic, On general sum-connectivity index, J. Math. Chem. 47, 210–218, 2010.
There are 31 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Fatima Asif This is me 0000-0002-5459-9923

Zohaib Zahid This is me 0000-0003-3797-7029

Sohail Zafar This is me 0000-0002-8177-7799

Mohammad R. Farahani 0000-0003-2969-4280

Wei Gao This is me 0000-0001-8744-9334

Publication Date February 6, 2020
Published in Issue Year 2020

Cite

APA Asif, F., Zahid, Z., Zafar, S., Farahani, M. R., et al. (2020). On topological properties of some convex polytopes by using line operator on their subdivisions. Hacettepe Journal of Mathematics and Statistics, 49(1), 136-146. https://doi.org/10.15672/HJMS.2019.671
AMA Asif F, Zahid Z, Zafar S, Farahani MR, Gao W. On topological properties of some convex polytopes by using line operator on their subdivisions. Hacettepe Journal of Mathematics and Statistics. February 2020;49(1):136-146. doi:10.15672/HJMS.2019.671
Chicago Asif, Fatima, Zohaib Zahid, Sohail Zafar, Mohammad R. Farahani, and Wei Gao. “On Topological Properties of Some Convex Polytopes by Using Line Operator on Their Subdivisions”. Hacettepe Journal of Mathematics and Statistics 49, no. 1 (February 2020): 136-46. https://doi.org/10.15672/HJMS.2019.671.
EndNote Asif F, Zahid Z, Zafar S, Farahani MR, Gao W (February 1, 2020) On topological properties of some convex polytopes by using line operator on their subdivisions. Hacettepe Journal of Mathematics and Statistics 49 1 136–146.
IEEE F. Asif, Z. Zahid, S. Zafar, M. R. Farahani, and W. Gao, “On topological properties of some convex polytopes by using line operator on their subdivisions”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, pp. 136–146, 2020, doi: 10.15672/HJMS.2019.671.
ISNAD Asif, Fatima et al. “On Topological Properties of Some Convex Polytopes by Using Line Operator on Their Subdivisions”. Hacettepe Journal of Mathematics and Statistics 49/1 (February 2020), 136-146. https://doi.org/10.15672/HJMS.2019.671.
JAMA Asif F, Zahid Z, Zafar S, Farahani MR, Gao W. On topological properties of some convex polytopes by using line operator on their subdivisions. Hacettepe Journal of Mathematics and Statistics. 2020;49:136–146.
MLA Asif, Fatima et al. “On Topological Properties of Some Convex Polytopes by Using Line Operator on Their Subdivisions”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, 2020, pp. 136-4, doi:10.15672/HJMS.2019.671.
Vancouver Asif F, Zahid Z, Zafar S, Farahani MR, Gao W. On topological properties of some convex polytopes by using line operator on their subdivisions. Hacettepe Journal of Mathematics and Statistics. 2020;49(1):136-4.