Research Article
BibTex RIS Cite
Year 2020, , 1649 - 1659, 06.10.2020
https://doi.org/10.15672/hujms.537824

Abstract

References

  • [1] J.M. Burgos, Singularities in Negamis splitting formula for the Tutte polynomial, Discrete Appl. Math. 237, 65-74, 2018.
  • [2] H.H. Crapo, The Tutte polynomial, Aequationes Math. 3 (3), 211-229, 1969.
  • [3] H. Deng, S. Chen and J. Zhang, The Merrifield-Simmons index in(n, n+1)-graphs, J. Math. Chem. 43, 75-91, 2008.
  • [4] A. Dolati, M. Haghighat, S. Golalizadeh and M. Safari, The smallest Hosoya index of con-nected tricyclic graphs, MATCH Commun. Math. Comput. Chem. 65, 57-70, 2011.
  • [5] S. Li and Z. Zhu, Sharp lower bound for total number of matching of tricyclic graphs, Electron. J. Comb. 17, 15 pages, 2010.
  • [6] S. Ok and T.J. Perrett, Density of real zeros of the Tutte polynomial, Electron. J. Discrete Math. 61, 941-946, 2017.
  • [7] Y.M. Tong, J.B. Liu, Z.Z. Jiang and N.N. Lv, Extreme values of the first general Zagreb index in tricyclic graphs, J. Hefei Univ. Nat. Sci. 1, 4-7, 2010.
  • [8] W.T. Tutte, A contribution to the theory chromatic polynomials, Canad. J .Math. 6, 80-91, 1953.
  • [9] W.T. Tutte, On dichromatic polynomials, J. Combin. Theory 2, 301-320, 1967.
  • [10] W.T. Tutte, On chromatic polynomials and the golden ratio, J. Combin. Theory 9, 289-296, 1970.
  • [11] W.T. Tutte, Graph-polynomials, Adv. Appl. Math. 32, 5-9, 2004.

A classification for bicyclic and tricyclic graphs with respect to Tutte polynomial

Year 2020, , 1649 - 1659, 06.10.2020
https://doi.org/10.15672/hujms.537824

Abstract

The Tutte polynomial of a graph is a polynomial in two variables defined for every simple graph contains information about how the graph is connected. We prove some formulas for computing Tutte polynomial of bicyclic and tricyclic graph and finally classify tricyclic graph with respect to Tutte polynomial.

*****************************************************************************************************************************

*****************************************************************************************************************************

References

  • [1] J.M. Burgos, Singularities in Negamis splitting formula for the Tutte polynomial, Discrete Appl. Math. 237, 65-74, 2018.
  • [2] H.H. Crapo, The Tutte polynomial, Aequationes Math. 3 (3), 211-229, 1969.
  • [3] H. Deng, S. Chen and J. Zhang, The Merrifield-Simmons index in(n, n+1)-graphs, J. Math. Chem. 43, 75-91, 2008.
  • [4] A. Dolati, M. Haghighat, S. Golalizadeh and M. Safari, The smallest Hosoya index of con-nected tricyclic graphs, MATCH Commun. Math. Comput. Chem. 65, 57-70, 2011.
  • [5] S. Li and Z. Zhu, Sharp lower bound for total number of matching of tricyclic graphs, Electron. J. Comb. 17, 15 pages, 2010.
  • [6] S. Ok and T.J. Perrett, Density of real zeros of the Tutte polynomial, Electron. J. Discrete Math. 61, 941-946, 2017.
  • [7] Y.M. Tong, J.B. Liu, Z.Z. Jiang and N.N. Lv, Extreme values of the first general Zagreb index in tricyclic graphs, J. Hefei Univ. Nat. Sci. 1, 4-7, 2010.
  • [8] W.T. Tutte, A contribution to the theory chromatic polynomials, Canad. J .Math. 6, 80-91, 1953.
  • [9] W.T. Tutte, On dichromatic polynomials, J. Combin. Theory 2, 301-320, 1967.
  • [10] W.T. Tutte, On chromatic polynomials and the golden ratio, J. Combin. Theory 9, 289-296, 1970.
  • [11] W.T. Tutte, Graph-polynomials, Adv. Appl. Math. 32, 5-9, 2004.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Zahra Yarahmadi 0000-0003-1469-0842

Shiva Mir This is me 0000-0003-4065-5717

Publication Date October 6, 2020
Published in Issue Year 2020

Cite

APA Yarahmadi, Z., & Mir, S. (2020). A classification for bicyclic and tricyclic graphs with respect to Tutte polynomial. Hacettepe Journal of Mathematics and Statistics, 49(5), 1649-1659. https://doi.org/10.15672/hujms.537824
AMA Yarahmadi Z, Mir S. A classification for bicyclic and tricyclic graphs with respect to Tutte polynomial. Hacettepe Journal of Mathematics and Statistics. October 2020;49(5):1649-1659. doi:10.15672/hujms.537824
Chicago Yarahmadi, Zahra, and Shiva Mir. “A Classification for Bicyclic and Tricyclic Graphs With Respect to Tutte Polynomial”. Hacettepe Journal of Mathematics and Statistics 49, no. 5 (October 2020): 1649-59. https://doi.org/10.15672/hujms.537824.
EndNote Yarahmadi Z, Mir S (October 1, 2020) A classification for bicyclic and tricyclic graphs with respect to Tutte polynomial. Hacettepe Journal of Mathematics and Statistics 49 5 1649–1659.
IEEE Z. Yarahmadi and S. Mir, “A classification for bicyclic and tricyclic graphs with respect to Tutte polynomial”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 5, pp. 1649–1659, 2020, doi: 10.15672/hujms.537824.
ISNAD Yarahmadi, Zahra - Mir, Shiva. “A Classification for Bicyclic and Tricyclic Graphs With Respect to Tutte Polynomial”. Hacettepe Journal of Mathematics and Statistics 49/5 (October 2020), 1649-1659. https://doi.org/10.15672/hujms.537824.
JAMA Yarahmadi Z, Mir S. A classification for bicyclic and tricyclic graphs with respect to Tutte polynomial. Hacettepe Journal of Mathematics and Statistics. 2020;49:1649–1659.
MLA Yarahmadi, Zahra and Shiva Mir. “A Classification for Bicyclic and Tricyclic Graphs With Respect to Tutte Polynomial”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 5, 2020, pp. 1649-5, doi:10.15672/hujms.537824.
Vancouver Yarahmadi Z, Mir S. A classification for bicyclic and tricyclic graphs with respect to Tutte polynomial. Hacettepe Journal of Mathematics and Statistics. 2020;49(5):1649-5.