[9] M. D’Anna, A construction of Gorenstein rings, J. Algebra 306 (6), 507–519, 2006.
[10] M. D’Anna, C. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal,
in: M. Fontana, S. Kabbaj, B. Olberding, I. Swanson (Eds.), Commutative Algebra
and its Applications, Walter de Gruyter, Berlin, 155-172, 2009.
[11] M. D’Anna, C. Finocchiaro and M. Fontana, Properties of chains of prime ideals in
an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (9), 1633-1641,
2010.
[12] M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal:
the basic properties, J. Algebra Appl. 6 (3), 443-459, 2007.
[13] M. D’Anna and M. Fontana, The amalgamated duplication of a ring along a
multiplicative-canonical ideal, Ark. Mat. 45 (2), 241–252, 2007.
[14] A. Jaballah, Maximal non-Prüfer and Maximal non integrally closed subrings of a
field, J. Algebra Appl. 11 (5), article ID: 1250041, 18pp, 2012.
[15] S. Kabbaj, K. Louartiti, and M. Tamekkante, Bi-amalgamated algebras along ideals,
J. Commut. Algebra, 9, (1), 65-87, 2017.
[16] S. Kabbaj, N. Mahdou and M. A. S. Moutui, Bi-amalgamations subject to the arithmetical
property, J. Algebra Appl., 16, 1750030 (11 pages), 2017.
[17] N. Mahdou, A. Mimouni and M. A. S. Moutui, On almost valuation and almost Bezout
rings, Comm. Algebra 43, no. 1, 297–308, 2015.
[18] A. Mimouni, Prüfer-like conditions and pullbacks., J. Algebra 279 (2), 685–693, 2004.
[19] M. A. S. Moutui and N. Ouled Azaiez, Almost valuation property in bi–amalgamation
and pairs of rings, J. Algebra Appl., published online, 2018,
DOI:10.1142/S0219498819501044.
[20] A. R. Wadsworth, Pairs of domains where all intermediate domains are Noetherian,
Trans. Amer. Math. Soc. 195, 201-211, 1974.
Some commutative ring extensions defined by almost Bézout condition
In this paper, we study the almost Bézout property in different commutative ring extensions, namely, in bi-amalgamated algebras and pairs of rings. In Section 2, we deal with almost Bézout domains issued from bi-amalgamations. Our results capitalize well known results on amalgamations and pullbacks as well as generate new original class of rings satisfying this property. Section 3 investigates pairs of rings where all intermediate rings are almost Bézout domains. As an application of our results, we characterize pairs of rings $(R,T)$, where $R$ arises from a $(T,M,D)$ construction to be an almost Bézout domain.
[9] M. D’Anna, A construction of Gorenstein rings, J. Algebra 306 (6), 507–519, 2006.
[10] M. D’Anna, C. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal,
in: M. Fontana, S. Kabbaj, B. Olberding, I. Swanson (Eds.), Commutative Algebra
and its Applications, Walter de Gruyter, Berlin, 155-172, 2009.
[11] M. D’Anna, C. Finocchiaro and M. Fontana, Properties of chains of prime ideals in
an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (9), 1633-1641,
2010.
[12] M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal:
the basic properties, J. Algebra Appl. 6 (3), 443-459, 2007.
[13] M. D’Anna and M. Fontana, The amalgamated duplication of a ring along a
multiplicative-canonical ideal, Ark. Mat. 45 (2), 241–252, 2007.
[14] A. Jaballah, Maximal non-Prüfer and Maximal non integrally closed subrings of a
field, J. Algebra Appl. 11 (5), article ID: 1250041, 18pp, 2012.
[15] S. Kabbaj, K. Louartiti, and M. Tamekkante, Bi-amalgamated algebras along ideals,
J. Commut. Algebra, 9, (1), 65-87, 2017.
[16] S. Kabbaj, N. Mahdou and M. A. S. Moutui, Bi-amalgamations subject to the arithmetical
property, J. Algebra Appl., 16, 1750030 (11 pages), 2017.
[17] N. Mahdou, A. Mimouni and M. A. S. Moutui, On almost valuation and almost Bezout
rings, Comm. Algebra 43, no. 1, 297–308, 2015.
[18] A. Mimouni, Prüfer-like conditions and pullbacks., J. Algebra 279 (2), 685–693, 2004.
[19] M. A. S. Moutui and N. Ouled Azaiez, Almost valuation property in bi–amalgamation
and pairs of rings, J. Algebra Appl., published online, 2018,
DOI:10.1142/S0219498819501044.
[20] A. R. Wadsworth, Pairs of domains where all intermediate domains are Noetherian,
Trans. Amer. Math. Soc. 195, 201-211, 1974.
Azaiez, N. O., & Abdou Salam Moutui, M. (2020). Some commutative ring extensions defined by almost Bézout condition. Hacettepe Journal of Mathematics and Statistics, 49(1), 371-379. https://doi.org/10.15672/hujms.552224
AMA
Azaiez NO, Abdou Salam Moutui M. Some commutative ring extensions defined by almost Bézout condition. Hacettepe Journal of Mathematics and Statistics. February 2020;49(1):371-379. doi:10.15672/hujms.552224
Chicago
Azaiez, Najib Ouled, and Moutu Abdou Salam Moutui. “Some Commutative Ring Extensions Defined by Almost Bézout Condition”. Hacettepe Journal of Mathematics and Statistics 49, no. 1 (February 2020): 371-79. https://doi.org/10.15672/hujms.552224.
EndNote
Azaiez NO, Abdou Salam Moutui M (February 1, 2020) Some commutative ring extensions defined by almost Bézout condition. Hacettepe Journal of Mathematics and Statistics 49 1 371–379.
IEEE
N. O. Azaiez and M. Abdou Salam Moutui, “Some commutative ring extensions defined by almost Bézout condition”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, pp. 371–379, 2020, doi: 10.15672/hujms.552224.
ISNAD
Azaiez, Najib Ouled - Abdou Salam Moutui, Moutu. “Some Commutative Ring Extensions Defined by Almost Bézout Condition”. Hacettepe Journal of Mathematics and Statistics 49/1 (February 2020), 371-379. https://doi.org/10.15672/hujms.552224.
JAMA
Azaiez NO, Abdou Salam Moutui M. Some commutative ring extensions defined by almost Bézout condition. Hacettepe Journal of Mathematics and Statistics. 2020;49:371–379.
MLA
Azaiez, Najib Ouled and Moutu Abdou Salam Moutui. “Some Commutative Ring Extensions Defined by Almost Bézout Condition”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, 2020, pp. 371-9, doi:10.15672/hujms.552224.
Vancouver
Azaiez NO, Abdou Salam Moutui M. Some commutative ring extensions defined by almost Bézout condition. Hacettepe Journal of Mathematics and Statistics. 2020;49(1):371-9.