Research Article
BibTex RIS Cite
Year 2020, , 2094 - 2103, 08.12.2020
https://doi.org/10.15672/hujms.580684

Abstract

References

  • [1] G.E. Andrews, The Theory of Partitions, Addison-Wesley, Reading Mass., 1976.
  • [2] M. Bahşi and S. Solak, An application of hyperharmonic numbers in matrices, Hacet. J. Math. Stat. 42 (4), 387–393, 2013.
  • [3] A.T. Benjamin, D. Gaebler and R. Gaebler, A combinatorial approach to hyperharmonic numbers, Integers, 3, 1–9, 2003.
  • [4] A.T. Benjamin, G.O. Preston and J.J. Quinn, A Stirling encounter with harmonic numbers, Math. Mag. 75 (2), 95–103, 2002.
  • [5] J.H. Conway and R.K. Guy, The Book of Numbers, Copernicus, 1996.
  • [6] M. Genčev, Binomial sums involving harmonic numbers, Math. Slovaca, 61 (2), 215– 226, 2011.
  • [7] H.W. Gould, Combinatorial Identities, Morgantown, W. Va., 1972.
  • [8] C. Kızılateş and N. Tuğlu, Some combinatorial identities of q-harmonic and qhyperharmonic numbers, Communications in Mathematics and Applications 6 (2), 33–40, 2015.
  • [9] T. Mansour and M. Shattuck, A q-analog of the hyperharmonic numbers, Afrika Mat. 25 (1), 147–160, 2014.
  • [10] N. Ömür and G. Bilgin, Some applications of the generalized hyperharmonic numbers of order $r,$ $H_{n}^{r}(\alpha )$, Adv. Appl. Math. Sci. 17 (9), 617–627, 2018.
  • [11] N. Ömür and S. Koparal, On the matrices with the generalized hyperharmonic numbers of order r, Asian-Eur. J. Math. 11 (3), 1850045, 2018.
  • [12] J.M. Santmyer, A Stirling like sequence of rational numbers, Discrete Math. 171 (1-3), 229–235, 1997.
  • [13] M. Sved, Gaussians and binomials, Ars Combin. 17-A, 325–351, 1984.

Some applications on $q$-analog of the generalized hyperharmonic numbers of order $r,$ $ H_{n}^{r}(\alpha )$

Year 2020, , 2094 - 2103, 08.12.2020
https://doi.org/10.15672/hujms.580684

Abstract

In this paper, we define $q$-analog of the generalized harmonic numbers $H_{n}(\alpha )$ and the generalized hyperharmonic numbers of order $r,$ $H_{n}^{r}(\alpha ),$ and obtain some sums involving these numbers. Finally, we examine new applications of an $n\times n$ matrix $A_{n}=\left[ a_{i,j}\right] $ with the terms $a_{i,j}=H_{i}^{r}(j,q).$

References

  • [1] G.E. Andrews, The Theory of Partitions, Addison-Wesley, Reading Mass., 1976.
  • [2] M. Bahşi and S. Solak, An application of hyperharmonic numbers in matrices, Hacet. J. Math. Stat. 42 (4), 387–393, 2013.
  • [3] A.T. Benjamin, D. Gaebler and R. Gaebler, A combinatorial approach to hyperharmonic numbers, Integers, 3, 1–9, 2003.
  • [4] A.T. Benjamin, G.O. Preston and J.J. Quinn, A Stirling encounter with harmonic numbers, Math. Mag. 75 (2), 95–103, 2002.
  • [5] J.H. Conway and R.K. Guy, The Book of Numbers, Copernicus, 1996.
  • [6] M. Genčev, Binomial sums involving harmonic numbers, Math. Slovaca, 61 (2), 215– 226, 2011.
  • [7] H.W. Gould, Combinatorial Identities, Morgantown, W. Va., 1972.
  • [8] C. Kızılateş and N. Tuğlu, Some combinatorial identities of q-harmonic and qhyperharmonic numbers, Communications in Mathematics and Applications 6 (2), 33–40, 2015.
  • [9] T. Mansour and M. Shattuck, A q-analog of the hyperharmonic numbers, Afrika Mat. 25 (1), 147–160, 2014.
  • [10] N. Ömür and G. Bilgin, Some applications of the generalized hyperharmonic numbers of order $r,$ $H_{n}^{r}(\alpha )$, Adv. Appl. Math. Sci. 17 (9), 617–627, 2018.
  • [11] N. Ömür and S. Koparal, On the matrices with the generalized hyperharmonic numbers of order r, Asian-Eur. J. Math. 11 (3), 1850045, 2018.
  • [12] J.M. Santmyer, A Stirling like sequence of rational numbers, Discrete Math. 171 (1-3), 229–235, 1997.
  • [13] M. Sved, Gaussians and binomials, Ars Combin. 17-A, 325–351, 1984.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Sibel Koparal 0000-0001-9574-9652

Neşe Ömür 0000-0002-3972-9910

Cemile Duygu Çolak This is me 0000-0002-2322-4395

Publication Date December 8, 2020
Published in Issue Year 2020

Cite

APA Koparal, S., Ömür, N., & Çolak, C. D. (2020). Some applications on $q$-analog of the generalized hyperharmonic numbers of order $r,$ $ H_{n}^{r}(\alpha )$. Hacettepe Journal of Mathematics and Statistics, 49(6), 2094-2103. https://doi.org/10.15672/hujms.580684
AMA Koparal S, Ömür N, Çolak CD. Some applications on $q$-analog of the generalized hyperharmonic numbers of order $r,$ $ H_{n}^{r}(\alpha )$. Hacettepe Journal of Mathematics and Statistics. December 2020;49(6):2094-2103. doi:10.15672/hujms.580684
Chicago Koparal, Sibel, Neşe Ömür, and Cemile Duygu Çolak. “Some Applications on $q$-Analog of the Generalized Hyperharmonic Numbers of Order $r,$ $ H_{n}^{r}(\alpha )$”. Hacettepe Journal of Mathematics and Statistics 49, no. 6 (December 2020): 2094-2103. https://doi.org/10.15672/hujms.580684.
EndNote Koparal S, Ömür N, Çolak CD (December 1, 2020) Some applications on $q$-analog of the generalized hyperharmonic numbers of order $r,$ $ H_{n}^{r}(\alpha )$. Hacettepe Journal of Mathematics and Statistics 49 6 2094–2103.
IEEE S. Koparal, N. Ömür, and C. D. Çolak, “Some applications on $q$-analog of the generalized hyperharmonic numbers of order $r,$ $ H_{n}^{r}(\alpha )$”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 6, pp. 2094–2103, 2020, doi: 10.15672/hujms.580684.
ISNAD Koparal, Sibel et al. “Some Applications on $q$-Analog of the Generalized Hyperharmonic Numbers of Order $r,$ $ H_{n}^{r}(\alpha )$”. Hacettepe Journal of Mathematics and Statistics 49/6 (December 2020), 2094-2103. https://doi.org/10.15672/hujms.580684.
JAMA Koparal S, Ömür N, Çolak CD. Some applications on $q$-analog of the generalized hyperharmonic numbers of order $r,$ $ H_{n}^{r}(\alpha )$. Hacettepe Journal of Mathematics and Statistics. 2020;49:2094–2103.
MLA Koparal, Sibel et al. “Some Applications on $q$-Analog of the Generalized Hyperharmonic Numbers of Order $r,$ $ H_{n}^{r}(\alpha )$”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 6, 2020, pp. 2094-03, doi:10.15672/hujms.580684.
Vancouver Koparal S, Ömür N, Çolak CD. Some applications on $q$-analog of the generalized hyperharmonic numbers of order $r,$ $ H_{n}^{r}(\alpha )$. Hacettepe Journal of Mathematics and Statistics. 2020;49(6):2094-103.