Research Article
BibTex RIS Cite
Year 2020, , 1988 - 1996, 08.12.2020
https://doi.org/10.15672/hujms.604715

Abstract

References

  • [1] A.D. Adeshola, Some semigroups of full contraction mappings of a finite chain, PH.D Thesis, University of Ilorin, Nigeria, 2013.
  • [2] A.D. Adeshola and A. Umar, Combinatorial results for certain semigroups of orderpreserving full contraction mappings of a Finite Chain, J. Combin. Math. Combin. Comput. 106, 37–49, 2018.
  • [3] H. Ayık and L. Bugay, Generating sets of finite transformation semigroups PK(n, r) and K(n, r). Comm. Algebra, 43, 412–422, 2015.
  • [4] O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, Springer-Verlag, Berlin, Germany, 2009.
  • [5] G.U. Garba, Idempotents in partial transformation semigroups, Proc. Roy. Soc. Edinburgh, 116 (A), 359–366, 1990.
  • [6] G.U. Garba, On the idempotent ranks of certain semigroups of order-preserving transformations, Port. Math. 51, 185–204, 1994.
  • [7] G.U. Garba and M.J. Ibrahim and A.T. Imam, On certain semigroups of full contraction maps of a finite chain, Turkish J. Math. 41, 500–507, 2017.
  • [8] G.M.S. Gomes and J.M. Howie, On the ranks of certain finite semigroups of transformations, Math. Proc. Cambridge Philos. Soc. 101 (3), 395–403, 1987.
  • [9] G.M.S. Gomes and J.M. Howie, On the ranks of certain semigroups of orderpreserving transformations, Semigroup Forum, 45 (3), 272–282, 1992.
  • [10] P.M. Higgins J.M. Howie, J.D. Mitchell and N. Ruskuc, Countable versus uncountable rank in finite semigroups of transformations and relations, Proc. Edinb. Math. Soc. 46, 531–544, 2003.
  • [11] J.M. Howie, Idempotent generators in finite full transformation semigroups, Proc. Roy. Soc. Edinburgh. Sect. A, 81 (3-4), 317–323, 1978.
  • [12] J.M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, New York, USA, 1995.
  • [13] J.M. Howie and R.B. McFadden, Idempotent rank in finite full transformation semigroups, Proc. Roy. Soc. Edinburgh. Sect. A, 114 (3-4), 161–167, 1990.
  • [14] G.R. Ibrahim, A.T. Imam, A.D. Adeshola and G.N. Bakare, Some algebraic properties of order-preserving full contraction transformation semigroup, J. Semigroup Theory Appl. 2019 (2), 2019.
  • [15] K. Toker, Ranks of some subsemigroups of full contraction mappings on a finite chain (submitting).
  • [16] R.J. Wilson and J.J. Watkins, Graphs, An Introductory Approach, A First Course in Discrete Mathematics, Jon Wiley & Sons Inc., Toronto, 1990.
  • [17] P. Zhao and V.H. Fernandes, The Ranks of ideals in various transformation monoids, Comm. Algebra, 43, 674–692, 2015.

On the ranks of certain ideals of monotone contractions

Year 2020, , 1988 - 1996, 08.12.2020
https://doi.org/10.15672/hujms.604715

Abstract

Let $T_{n}$ be the (full) transformation semigroup, and let $OCT_{n}$ and $ORCT_{n}$ be its subsemigroups of isotone contractions and of monotone contractions on a finite chain $X_{n}=\{1,\ldots ,n\}$ under its natural order, respectively. In this study, we obtain the ranks of the ideals $OCT_{n,r}=\{\alpha\in OCT_{n}\,:\, |im(\alpha)|\leq r\}$ and $ORCT_{n,r}=\{ \alpha \in ORCT_{n}\,:\, |im(\alpha)|\leq r\}$ for $1\leq r\leq n-1$.

References

  • [1] A.D. Adeshola, Some semigroups of full contraction mappings of a finite chain, PH.D Thesis, University of Ilorin, Nigeria, 2013.
  • [2] A.D. Adeshola and A. Umar, Combinatorial results for certain semigroups of orderpreserving full contraction mappings of a Finite Chain, J. Combin. Math. Combin. Comput. 106, 37–49, 2018.
  • [3] H. Ayık and L. Bugay, Generating sets of finite transformation semigroups PK(n, r) and K(n, r). Comm. Algebra, 43, 412–422, 2015.
  • [4] O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, Springer-Verlag, Berlin, Germany, 2009.
  • [5] G.U. Garba, Idempotents in partial transformation semigroups, Proc. Roy. Soc. Edinburgh, 116 (A), 359–366, 1990.
  • [6] G.U. Garba, On the idempotent ranks of certain semigroups of order-preserving transformations, Port. Math. 51, 185–204, 1994.
  • [7] G.U. Garba and M.J. Ibrahim and A.T. Imam, On certain semigroups of full contraction maps of a finite chain, Turkish J. Math. 41, 500–507, 2017.
  • [8] G.M.S. Gomes and J.M. Howie, On the ranks of certain finite semigroups of transformations, Math. Proc. Cambridge Philos. Soc. 101 (3), 395–403, 1987.
  • [9] G.M.S. Gomes and J.M. Howie, On the ranks of certain semigroups of orderpreserving transformations, Semigroup Forum, 45 (3), 272–282, 1992.
  • [10] P.M. Higgins J.M. Howie, J.D. Mitchell and N. Ruskuc, Countable versus uncountable rank in finite semigroups of transformations and relations, Proc. Edinb. Math. Soc. 46, 531–544, 2003.
  • [11] J.M. Howie, Idempotent generators in finite full transformation semigroups, Proc. Roy. Soc. Edinburgh. Sect. A, 81 (3-4), 317–323, 1978.
  • [12] J.M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, New York, USA, 1995.
  • [13] J.M. Howie and R.B. McFadden, Idempotent rank in finite full transformation semigroups, Proc. Roy. Soc. Edinburgh. Sect. A, 114 (3-4), 161–167, 1990.
  • [14] G.R. Ibrahim, A.T. Imam, A.D. Adeshola and G.N. Bakare, Some algebraic properties of order-preserving full contraction transformation semigroup, J. Semigroup Theory Appl. 2019 (2), 2019.
  • [15] K. Toker, Ranks of some subsemigroups of full contraction mappings on a finite chain (submitting).
  • [16] R.J. Wilson and J.J. Watkins, Graphs, An Introductory Approach, A First Course in Discrete Mathematics, Jon Wiley & Sons Inc., Toronto, 1990.
  • [17] P. Zhao and V.H. Fernandes, The Ranks of ideals in various transformation monoids, Comm. Algebra, 43, 674–692, 2015.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Leyla Bugay 0000-0002-8316-2763

Publication Date December 8, 2020
Published in Issue Year 2020

Cite

APA Bugay, L. (2020). On the ranks of certain ideals of monotone contractions. Hacettepe Journal of Mathematics and Statistics, 49(6), 1988-1996. https://doi.org/10.15672/hujms.604715
AMA Bugay L. On the ranks of certain ideals of monotone contractions. Hacettepe Journal of Mathematics and Statistics. December 2020;49(6):1988-1996. doi:10.15672/hujms.604715
Chicago Bugay, Leyla. “On the Ranks of Certain Ideals of Monotone Contractions”. Hacettepe Journal of Mathematics and Statistics 49, no. 6 (December 2020): 1988-96. https://doi.org/10.15672/hujms.604715.
EndNote Bugay L (December 1, 2020) On the ranks of certain ideals of monotone contractions. Hacettepe Journal of Mathematics and Statistics 49 6 1988–1996.
IEEE L. Bugay, “On the ranks of certain ideals of monotone contractions”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 6, pp. 1988–1996, 2020, doi: 10.15672/hujms.604715.
ISNAD Bugay, Leyla. “On the Ranks of Certain Ideals of Monotone Contractions”. Hacettepe Journal of Mathematics and Statistics 49/6 (December 2020), 1988-1996. https://doi.org/10.15672/hujms.604715.
JAMA Bugay L. On the ranks of certain ideals of monotone contractions. Hacettepe Journal of Mathematics and Statistics. 2020;49:1988–1996.
MLA Bugay, Leyla. “On the Ranks of Certain Ideals of Monotone Contractions”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 6, 2020, pp. 1988-96, doi:10.15672/hujms.604715.
Vancouver Bugay L. On the ranks of certain ideals of monotone contractions. Hacettepe Journal of Mathematics and Statistics. 2020;49(6):1988-96.