Year 2020,
, 921 - 934, 02.06.2020
Meltem Gölgeli
,
Fatihcan M. Atay
References
- [1] S. Agrawal and S. Nadel, Acute bacterial meningitis in infants and children epidemi-
ology and management, Pediatr Drugs, 13 (6), 385–400, 2011.
- [2] O.M. Akpa and B.A. Oyejola, Modeling the transmission dynamics of HIV/AIDS
epidemics: an introduction and a review, J. Infect. Dev. Ctries. 4 (10), 597–608,
2010.
- [3] B.M. Althouse and S.V. Scarpino, Asymptomatic transmission and the resurgence of
Bordetella pertussis, BMC Medicine, 13, 146, 2015.
- [4] E.J. Anderson and S.G. Weber, Rotavirus infection in adults, Lancet Infect. Dis. 4,
91–99, 2004.
- [5] R.M. Anderson and R.M. May, Infectious Diseases of Humans, Dynamics and Con-
trol, Oxford University Press, Oxford, 1991.
- [6] P. Balmer, C. Burman, L. Serra and L. J. York, Impact of meningococcal vaccina-
tion on carriage and disease transmission: A review of the literature, Hum. Vaccin.
Immunother, 14 (5), 1118–1130, 2018.
- [7] S. Bunimovich-Mendrazitsky and L. Stone, Modeling polio as a disease of develop-
ment, J. Theor. Biol. 237 (3), 302–315, 2005.
- [8] Centers for Disease Control and Prevention, https://www.cdc.gov/meningitis/bacterial.html
- [9] M. Ceyhan, M. Celik, E.T. Demir, V. Gurbuz, A.E. Aycan and S. Unal Acquisition of
meningococcal serogroup W − 135 carriage in turkish hajj pilgrims who had received
the quadrivalent meningococcal polysaccharide vaccine, Clin. Vaccine Immunol. 20
(1), 66–68, 2012.
- [10] S. Chávez-Bueno and, G.H. Jr. McCracken, Bacterial meningitis in children, Pediatr
Clin. N. Am. 52, 795–810, 2005.
- [11] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold
endemic equilibria for compartmental models of disease transmission, Math. Biosci.
180, 29–48, 2002.
- [12] D.J.D. Earn, P. Rohani, B.M. Bolker and B.T. Grenfell, A simple model for complex
dynamical transitions in epidemics, Science, 87, 667–670, 2000.
- [13] T. Harko, S.N.F. Lobo and M.K. Mak, Exact analytical solutions of the Susceptible-
Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and
birth rates, Appl. Math. Comput. 236, 184–194, 2014.
- [14] O. Hoffman and R.J. Weber, Pathophysiology and treatment of bacterial meningitis,
Ther. Adv. Neurol. Disord. 2(6), 1–7, 2009.
- [15] T.J. Irving, K.B. Bltuss, C. Colijn and C. L. Trotter, Modelling meningococcal menin-
gitis in the African meningitis belt, Epidemiol. Infect. 140 (05), 89–905, 2011.
- [16] D.S. Jones and B.D. Sleeman, Differential Equations and Mathematical Biology,
Chapman and Hall/CRC, London, 2003.
- [17] D. Kalajdzievska and M.Y. Li, Modeling the effects of carriers on transmission dy-
namics of infectious diseases, Math. Biosci. Eng. 8, 3, 2011.
- [18] W.O. Kermack and A.G. McKendrick, Contribution to mathematical theory of epi-
demics, Soc. Lond. A Mat. 115, 700–721, 1927.
- [19] Y.A. Kuznetsov and C. Piccardi, Bifurcation analysis of periodic SEIR and SIR epi-
demic models, J. Math. Biol. 32, 109–121, 1994.
- [20] C. Ma, S. Yan, Q. Su, L. Hao, S. Tang, Z. An, Y. He, G. Fan, L. Rodewald and H.
Wang, Measles transmission among adults with spread to children during an outbreak:
Implications for measles elimination in China, 2014, Vaccine, 34 (51), 6539–6544,
2016.
- [21] MATLAB, version 9.14.0.813654 (R2018a), The MathWorks Inc., Massachusetts,
2018.
- [22] A.M. Molesworth, L.E. Cuevas, S.J. Connor, A.P. Morse and M.C. Thomson, Envi-
ronmental risk and meningitis epidemics in Africa, Emerg. Infect. Dis. 9 (10), 1287–
1293, 2003.
- [23] J. Müller and C. Kuttler, Methods and Models in Mathematical Biology, Springer-
Verlag, Berlin, Heidelberg, 2015.
- [24] J.D. Murray, Mathematical Biology, Springer-Verlag, New York, 1993.
- [25] L.F. Olsen and W.M. Schaffer, Chaos versus noisy periodicity: alternative hypotheses
for childhood epidemics, Science, 249, 499–504, 1990.
- [26] A.M. Oordt-Speets, R. Bolijn, R.C. van Hoorn, A. Bhavsar and M. Kyaw, Global
etiology of bacterial meningitis: A systematic review and meta-analysis, PLoS One,
13 (6), e0198772, 2018.
- [27] Y. Özsürekci, Turkiye’de menenjite neden olan bakteriel ajanlar ve meningokal sero-
gruplarin seroprevelansi (Unpublished doctoral dissertation), Hacettepe University
Faculty of Medicine, 2013.
- [28] K. Rock, S. Brand, J. Moir and M.J. Keeling, Dynamics of infectious diseases, Rep.
Prog. Phys. 77, 026602, 2014.
- [29] D. Schenzle, An age-structured model of pre- and post-vaccination measles transmis-
sion, Math. Med. Biol. 1, 169–191, 1984.
- [30] R. Tekin, E.C. Dinleyici, M. Ceyhan, A. Karbuz, N. Salman, M. Sutcu, Z.Kurugol, Y.
Balliel, M.Celik, M. Hacimustafaoglu, N. Kuyucu, M.Kondolot, G. Sensoy, O.Metin,
S.S. Kara, M. Dinleyici, O.Kilic, C. Bayhan, V. Gurbuz, E. Aycan, A. Memedova,
A. Karli and S. Celebi, The prevalence, serogroup distribution and risk factors of
meningococcal carriage in adolescents and young adults in Turkey, Hum. Vaccin. Im-
munother. 13(5), 1182–1189, 2017.
Analysis of an epidemic model for transmitted diseases in a group of adults and an extension to two age classes
Year 2020,
, 921 - 934, 02.06.2020
Meltem Gölgeli
,
Fatihcan M. Atay
Abstract
Infectious diseases are a serious problem for public health and spark the interest in interdisciplinary studies. In this paper, we present two mathematical models describing a possible scenario for infectious diseases. The first model considers the dynamics of the disease among adults and emphasizes the role of carriers in the SIR model and the second model assumes that the disease is transmitted to children by adults. We state the equilibria for each model and study the local stability of the equilibria. Furthermore, we perform simulations using a parameter set that explains the spread of a specific infectious disease (meningococcal disease) and interpret the possible cases of transmission via simulations.
References
- [1] S. Agrawal and S. Nadel, Acute bacterial meningitis in infants and children epidemi-
ology and management, Pediatr Drugs, 13 (6), 385–400, 2011.
- [2] O.M. Akpa and B.A. Oyejola, Modeling the transmission dynamics of HIV/AIDS
epidemics: an introduction and a review, J. Infect. Dev. Ctries. 4 (10), 597–608,
2010.
- [3] B.M. Althouse and S.V. Scarpino, Asymptomatic transmission and the resurgence of
Bordetella pertussis, BMC Medicine, 13, 146, 2015.
- [4] E.J. Anderson and S.G. Weber, Rotavirus infection in adults, Lancet Infect. Dis. 4,
91–99, 2004.
- [5] R.M. Anderson and R.M. May, Infectious Diseases of Humans, Dynamics and Con-
trol, Oxford University Press, Oxford, 1991.
- [6] P. Balmer, C. Burman, L. Serra and L. J. York, Impact of meningococcal vaccina-
tion on carriage and disease transmission: A review of the literature, Hum. Vaccin.
Immunother, 14 (5), 1118–1130, 2018.
- [7] S. Bunimovich-Mendrazitsky and L. Stone, Modeling polio as a disease of develop-
ment, J. Theor. Biol. 237 (3), 302–315, 2005.
- [8] Centers for Disease Control and Prevention, https://www.cdc.gov/meningitis/bacterial.html
- [9] M. Ceyhan, M. Celik, E.T. Demir, V. Gurbuz, A.E. Aycan and S. Unal Acquisition of
meningococcal serogroup W − 135 carriage in turkish hajj pilgrims who had received
the quadrivalent meningococcal polysaccharide vaccine, Clin. Vaccine Immunol. 20
(1), 66–68, 2012.
- [10] S. Chávez-Bueno and, G.H. Jr. McCracken, Bacterial meningitis in children, Pediatr
Clin. N. Am. 52, 795–810, 2005.
- [11] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold
endemic equilibria for compartmental models of disease transmission, Math. Biosci.
180, 29–48, 2002.
- [12] D.J.D. Earn, P. Rohani, B.M. Bolker and B.T. Grenfell, A simple model for complex
dynamical transitions in epidemics, Science, 87, 667–670, 2000.
- [13] T. Harko, S.N.F. Lobo and M.K. Mak, Exact analytical solutions of the Susceptible-
Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and
birth rates, Appl. Math. Comput. 236, 184–194, 2014.
- [14] O. Hoffman and R.J. Weber, Pathophysiology and treatment of bacterial meningitis,
Ther. Adv. Neurol. Disord. 2(6), 1–7, 2009.
- [15] T.J. Irving, K.B. Bltuss, C. Colijn and C. L. Trotter, Modelling meningococcal menin-
gitis in the African meningitis belt, Epidemiol. Infect. 140 (05), 89–905, 2011.
- [16] D.S. Jones and B.D. Sleeman, Differential Equations and Mathematical Biology,
Chapman and Hall/CRC, London, 2003.
- [17] D. Kalajdzievska and M.Y. Li, Modeling the effects of carriers on transmission dy-
namics of infectious diseases, Math. Biosci. Eng. 8, 3, 2011.
- [18] W.O. Kermack and A.G. McKendrick, Contribution to mathematical theory of epi-
demics, Soc. Lond. A Mat. 115, 700–721, 1927.
- [19] Y.A. Kuznetsov and C. Piccardi, Bifurcation analysis of periodic SEIR and SIR epi-
demic models, J. Math. Biol. 32, 109–121, 1994.
- [20] C. Ma, S. Yan, Q. Su, L. Hao, S. Tang, Z. An, Y. He, G. Fan, L. Rodewald and H.
Wang, Measles transmission among adults with spread to children during an outbreak:
Implications for measles elimination in China, 2014, Vaccine, 34 (51), 6539–6544,
2016.
- [21] MATLAB, version 9.14.0.813654 (R2018a), The MathWorks Inc., Massachusetts,
2018.
- [22] A.M. Molesworth, L.E. Cuevas, S.J. Connor, A.P. Morse and M.C. Thomson, Envi-
ronmental risk and meningitis epidemics in Africa, Emerg. Infect. Dis. 9 (10), 1287–
1293, 2003.
- [23] J. Müller and C. Kuttler, Methods and Models in Mathematical Biology, Springer-
Verlag, Berlin, Heidelberg, 2015.
- [24] J.D. Murray, Mathematical Biology, Springer-Verlag, New York, 1993.
- [25] L.F. Olsen and W.M. Schaffer, Chaos versus noisy periodicity: alternative hypotheses
for childhood epidemics, Science, 249, 499–504, 1990.
- [26] A.M. Oordt-Speets, R. Bolijn, R.C. van Hoorn, A. Bhavsar and M. Kyaw, Global
etiology of bacterial meningitis: A systematic review and meta-analysis, PLoS One,
13 (6), e0198772, 2018.
- [27] Y. Özsürekci, Turkiye’de menenjite neden olan bakteriel ajanlar ve meningokal sero-
gruplarin seroprevelansi (Unpublished doctoral dissertation), Hacettepe University
Faculty of Medicine, 2013.
- [28] K. Rock, S. Brand, J. Moir and M.J. Keeling, Dynamics of infectious diseases, Rep.
Prog. Phys. 77, 026602, 2014.
- [29] D. Schenzle, An age-structured model of pre- and post-vaccination measles transmis-
sion, Math. Med. Biol. 1, 169–191, 1984.
- [30] R. Tekin, E.C. Dinleyici, M. Ceyhan, A. Karbuz, N. Salman, M. Sutcu, Z.Kurugol, Y.
Balliel, M.Celik, M. Hacimustafaoglu, N. Kuyucu, M.Kondolot, G. Sensoy, O.Metin,
S.S. Kara, M. Dinleyici, O.Kilic, C. Bayhan, V. Gurbuz, E. Aycan, A. Memedova,
A. Karli and S. Celebi, The prevalence, serogroup distribution and risk factors of
meningococcal carriage in adolescents and young adults in Turkey, Hum. Vaccin. Im-
munother. 13(5), 1182–1189, 2017.