[1] D.D. Anderson, D. Bennis, B. Fahid and A. Shaiea, On n-trivial extension of rings,
Rocky Mountain J. Math. 47, 2439–2511, 2017.
[2] R. Antoine, Examples of Armendariz rings, Comm. Algebra, 38 (11), 4130–4143,
2010.
[3] C. Bakkari and M. Es-Saidi, Nil-clean property in amalgamated algebras along an
ideal, Ann. Univ. Ferrara, 65, 15–20, 2019.
[4] M.B. Boisen and P.B. Sheldon, CPI-extension: Over rings of integral domains with
special prime spectrum, Canad. J. Math. 29, 722–737, 1977.
[5] G. Călugăreanu, UU rings, Carpathian J. Math. 31 (2), 157–163, 2015.
[6] H. Chen, On strongly J-clean rings, Comm. Algebra, 38 (10), 3790–3804, 2010.
[7] M. Chhiti, N. Mahdou and M. Tamekkante, Clean property in amalgamated algebras
along an ideal, Hacet. J. Math. Stat. 44 (1), 41–49, 2015.
[8] Y. Chun, Y.C. Jeon, S. Kang, K.N. Lee and Y. Lee, A concept unifying the Armendariz
and NI conditions, Bull. Korean Math. Soc. 48 (1), 115–127, 2011.
[9] P. Crawley and B. Jónsson, Refinements for infinite direct decompositions of algebraic
systems, Pacific J. Math. 14, 797–855, 1964.
[10] P. Danchev and T.Y. Lam, Rings with unipotent units, Publ. Math. Debrecen, 88
(3-4), 449–466, 2016.
[11] M. D’Anna, A construction of Gorenstein rings, J. Algebra, 306 (2), 507–519, 2006.
[12] M. D’Anna and M. Fontana, The amalgamated duplication of a ring along a
multiplicative-canonical ideal, Ark. Mat. 45 (2), 241–252, 2007.
[13] M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal:
the basic properties, J. Algebra Appl. 6 (3), 443–459, 2007.
[14] M. D’Anna, C. A. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal,
Commutative algebra and its applications, Walter de Gruyter, Berlin, 241–252, 2009.
Let $f:A\rightarrow B$ be a ring homomorphism and $K$ be an ideal of $B$. Many variations of the notions of clean and nil-clean rings have been studied by a variety of authors. We investigate strongly $\pi$-regular and clean-like properties of the amalgamation ring $A\bowtie^{f}K$ of $A$ with $B$ along $K$ with respect to $f$.
[1] D.D. Anderson, D. Bennis, B. Fahid and A. Shaiea, On n-trivial extension of rings,
Rocky Mountain J. Math. 47, 2439–2511, 2017.
[2] R. Antoine, Examples of Armendariz rings, Comm. Algebra, 38 (11), 4130–4143,
2010.
[3] C. Bakkari and M. Es-Saidi, Nil-clean property in amalgamated algebras along an
ideal, Ann. Univ. Ferrara, 65, 15–20, 2019.
[4] M.B. Boisen and P.B. Sheldon, CPI-extension: Over rings of integral domains with
special prime spectrum, Canad. J. Math. 29, 722–737, 1977.
[5] G. Călugăreanu, UU rings, Carpathian J. Math. 31 (2), 157–163, 2015.
[6] H. Chen, On strongly J-clean rings, Comm. Algebra, 38 (10), 3790–3804, 2010.
[7] M. Chhiti, N. Mahdou and M. Tamekkante, Clean property in amalgamated algebras
along an ideal, Hacet. J. Math. Stat. 44 (1), 41–49, 2015.
[8] Y. Chun, Y.C. Jeon, S. Kang, K.N. Lee and Y. Lee, A concept unifying the Armendariz
and NI conditions, Bull. Korean Math. Soc. 48 (1), 115–127, 2011.
[9] P. Crawley and B. Jónsson, Refinements for infinite direct decompositions of algebraic
systems, Pacific J. Math. 14, 797–855, 1964.
[10] P. Danchev and T.Y. Lam, Rings with unipotent units, Publ. Math. Debrecen, 88
(3-4), 449–466, 2016.
[11] M. D’Anna, A construction of Gorenstein rings, J. Algebra, 306 (2), 507–519, 2006.
[12] M. D’Anna and M. Fontana, The amalgamated duplication of a ring along a
multiplicative-canonical ideal, Ark. Mat. 45 (2), 241–252, 2007.
[13] M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal:
the basic properties, J. Algebra Appl. 6 (3), 443–459, 2007.
[14] M. D’Anna, C. A. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal,
Commutative algebra and its applications, Walter de Gruyter, Berlin, 241–252, 2009.
Farshad, N., Safarisabet, S. A., & Moussavi, A. (2021). Amalgamated rings with clean-type properties. Hacettepe Journal of Mathematics and Statistics, 50(5), 1358-1370. https://doi.org/10.15672/hujms.676342
AMA
Farshad N, Safarisabet SA, Moussavi A. Amalgamated rings with clean-type properties. Hacettepe Journal of Mathematics and Statistics. October 2021;50(5):1358-1370. doi:10.15672/hujms.676342
Chicago
Farshad, Negin, Shaaban Ali Safarisabet, and Ahmad Moussavi. “Amalgamated Rings With Clean-Type Properties”. Hacettepe Journal of Mathematics and Statistics 50, no. 5 (October 2021): 1358-70. https://doi.org/10.15672/hujms.676342.
EndNote
Farshad N, Safarisabet SA, Moussavi A (October 1, 2021) Amalgamated rings with clean-type properties. Hacettepe Journal of Mathematics and Statistics 50 5 1358–1370.
IEEE
N. Farshad, S. A. Safarisabet, and A. Moussavi, “Amalgamated rings with clean-type properties”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 5, pp. 1358–1370, 2021, doi: 10.15672/hujms.676342.
ISNAD
Farshad, Negin et al. “Amalgamated Rings With Clean-Type Properties”. Hacettepe Journal of Mathematics and Statistics 50/5 (October 2021), 1358-1370. https://doi.org/10.15672/hujms.676342.
JAMA
Farshad N, Safarisabet SA, Moussavi A. Amalgamated rings with clean-type properties. Hacettepe Journal of Mathematics and Statistics. 2021;50:1358–1370.
MLA
Farshad, Negin et al. “Amalgamated Rings With Clean-Type Properties”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 5, 2021, pp. 1358-70, doi:10.15672/hujms.676342.
Vancouver
Farshad N, Safarisabet SA, Moussavi A. Amalgamated rings with clean-type properties. Hacettepe Journal of Mathematics and Statistics. 2021;50(5):1358-70.