Bayesian estimation of bivariate Pickands dependence function
Year 2022,
, 1723 - 1735, 01.12.2022
Alireza Ahmadabadi
,
Gholamhossein Gholami
,
Burcu Hudaverdi
Abstract
In the present study, Bayesian method of estimating the Pickands dependence function of bivariate extreme-value copulas is proposed. Initially, cubic B-spline regression is used to model the dependence function. Then, the estimator of Pickands dependence function is obtained by the Bayesian approach. Through the estimation process, the prior and the posterior distributions of the parameter vectors are provided. The posterior sampling algorithm is presented in order to approximate the posterior distribution. We give a simulation study to measure and compare the performance of the proposed Bayesian estimator of the Pickands dependence function. A real data example is also illustrated.
References
- [1] A. Ahmadabadi and B. Hudaverdi Ucer, Bivariate nonparametric estimation of the
Pickands dependence function using Bernstein copula with kernel regression approach,
Comput. Statist. 32 (4), 1515–1532, 2017.
- [2] C.B. Barber, D.P. Dobkin and H.T. Huhdanpaa, The Quickhull algorithm for convex
hulls, ACM Trans. Math. Software 22 (4), 469–483, 1996.
- [3] B. Bergahus, A. Bücher and H. Dette, Minimum distance estimation of Pickands
dependence function for multivariate distributions, Working Paper, 2012.
- [4] S.P. Brooks, Bayesian computation: a statistical revolution, Philos. Trans. Royal Soc.
A 361 (1813), 2681–2697, 2003.
- [5] A. Bücher, H. Dette and S. Volgushev, New estimators of the Pickands dependence
function and a test for extreme-value dependence, Ann. Statist. 39 (4), 1963–2006,
2011.
- [6] P. Capéraà, A.-L.Fougeres and C. Genest, A nonparametric estimation procedure for
bivariate extreme value copulas, Biometrika 84 (4), 567–577, 1997.
- [7] E. Cormiér, C. Genest and J.G. Neslehova, Using B-splines for nonparametric inference
on bivariate extreme-value copulas, Extremes 17 (4), 633–659, 2014.
- [8] P. Deheuvels, On the limiting behavior of the Pickands estimator for bivariate
extreme-value distributions, Statist. Probab. Lett. 12 (5), 429–439, 1991.
- [9] C. Genest and J.Segers, Rank-based inference for bivariate extreme-value copulas,
Ann. Statist. 37 (5B), 2990–3022, 2009.
- [10] G. Gholami, On the Bayesian change-point problem in regression analysis, J. Stat.
Theory Appl. 9 (1), 9–27, 2010.
- [11] P. Green, Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination, Biometrika 82 (4), 711–732, 1995.
- [12] G. Gudendorf and J. Segers, Nonparametric estimation of an extreme-value copula in
arbitrary dimensions, J. Multivariate Anal. 102 (1), 37–47, 2011.
- [13] S. Guillotte and F. Perron, A Bayesian estimator for the dependence function of a
bivariate extremevalue distribution, Canad. J. Statist. 36 (3), 83-396, 2008.
- [14] E.W. Frees and E.A. Valdez, Understanding relationships using copulas, N. Am. Actuar.
J. 2 (1), 1–25, 1998.
- [15] P. Hall and N. Tajvidi, Distribution and dependence-function estimation for bivariate
extreme-value distributions, Bernoulli 6 (5), 835–844, 2000.
- [16] G. Marcon, S.A. Padoan, P. Naveau, P. Muliere and J. Segers, Multivariate nonparametric
estimation of the Pickands dependence function using Bernstein polynomials,
J. Statist. Plann. Inference 183, 1-17, 2017.
- [17] J. Pickands, Multivariate extreme value distribution, in: Proceedings of the 43rd
Session of the International Statistical Institute, Buenos Aires, Brazil, 859–878, 1981.
- [18] J. Segers, Non-parametric inference for bivariate extreme-value copulas, in: M. Ahsanullah
and S. Kirmani (ed.) Extreme Value Distributions, Nova Science Publishers,
181–203, 1985.
- [19] A. Zellner, On assessing prior distributions and Bayesian regression analysis with g
prior distributions, in: P. Goel and A. Zellner (ed.) Bayesian Inference and Decision
Techniques: Essays in Honor of Bruno de Finetti. Studies in Bayesian Econometrics.
Elsevier, New York, 233-243, 1986.
- [20] D. Zhang, M.T Wells and L. Peng, Nonparametric estimation of the dependence function
for a multivariate extreme value distribution, J. Multivariate Anal. 99, 577–588,
2008.
Year 2022,
, 1723 - 1735, 01.12.2022
Alireza Ahmadabadi
,
Gholamhossein Gholami
,
Burcu Hudaverdi
References
- [1] A. Ahmadabadi and B. Hudaverdi Ucer, Bivariate nonparametric estimation of the
Pickands dependence function using Bernstein copula with kernel regression approach,
Comput. Statist. 32 (4), 1515–1532, 2017.
- [2] C.B. Barber, D.P. Dobkin and H.T. Huhdanpaa, The Quickhull algorithm for convex
hulls, ACM Trans. Math. Software 22 (4), 469–483, 1996.
- [3] B. Bergahus, A. Bücher and H. Dette, Minimum distance estimation of Pickands
dependence function for multivariate distributions, Working Paper, 2012.
- [4] S.P. Brooks, Bayesian computation: a statistical revolution, Philos. Trans. Royal Soc.
A 361 (1813), 2681–2697, 2003.
- [5] A. Bücher, H. Dette and S. Volgushev, New estimators of the Pickands dependence
function and a test for extreme-value dependence, Ann. Statist. 39 (4), 1963–2006,
2011.
- [6] P. Capéraà, A.-L.Fougeres and C. Genest, A nonparametric estimation procedure for
bivariate extreme value copulas, Biometrika 84 (4), 567–577, 1997.
- [7] E. Cormiér, C. Genest and J.G. Neslehova, Using B-splines for nonparametric inference
on bivariate extreme-value copulas, Extremes 17 (4), 633–659, 2014.
- [8] P. Deheuvels, On the limiting behavior of the Pickands estimator for bivariate
extreme-value distributions, Statist. Probab. Lett. 12 (5), 429–439, 1991.
- [9] C. Genest and J.Segers, Rank-based inference for bivariate extreme-value copulas,
Ann. Statist. 37 (5B), 2990–3022, 2009.
- [10] G. Gholami, On the Bayesian change-point problem in regression analysis, J. Stat.
Theory Appl. 9 (1), 9–27, 2010.
- [11] P. Green, Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination, Biometrika 82 (4), 711–732, 1995.
- [12] G. Gudendorf and J. Segers, Nonparametric estimation of an extreme-value copula in
arbitrary dimensions, J. Multivariate Anal. 102 (1), 37–47, 2011.
- [13] S. Guillotte and F. Perron, A Bayesian estimator for the dependence function of a
bivariate extremevalue distribution, Canad. J. Statist. 36 (3), 83-396, 2008.
- [14] E.W. Frees and E.A. Valdez, Understanding relationships using copulas, N. Am. Actuar.
J. 2 (1), 1–25, 1998.
- [15] P. Hall and N. Tajvidi, Distribution and dependence-function estimation for bivariate
extreme-value distributions, Bernoulli 6 (5), 835–844, 2000.
- [16] G. Marcon, S.A. Padoan, P. Naveau, P. Muliere and J. Segers, Multivariate nonparametric
estimation of the Pickands dependence function using Bernstein polynomials,
J. Statist. Plann. Inference 183, 1-17, 2017.
- [17] J. Pickands, Multivariate extreme value distribution, in: Proceedings of the 43rd
Session of the International Statistical Institute, Buenos Aires, Brazil, 859–878, 1981.
- [18] J. Segers, Non-parametric inference for bivariate extreme-value copulas, in: M. Ahsanullah
and S. Kirmani (ed.) Extreme Value Distributions, Nova Science Publishers,
181–203, 1985.
- [19] A. Zellner, On assessing prior distributions and Bayesian regression analysis with g
prior distributions, in: P. Goel and A. Zellner (ed.) Bayesian Inference and Decision
Techniques: Essays in Honor of Bruno de Finetti. Studies in Bayesian Econometrics.
Elsevier, New York, 233-243, 1986.
- [20] D. Zhang, M.T Wells and L. Peng, Nonparametric estimation of the dependence function
for a multivariate extreme value distribution, J. Multivariate Anal. 99, 577–588,
2008.