Hypercyclic operators for iterated function systems
Year 2021,
, 483 - 491, 11.04.2021
Mohammad Salman
,
Ruchi Das
Abstract
In this paper we introduce and study the notion of hypercyclicity for iterated function systems (IFS) of operators. We prove that for a linear IFS, hypercyclicity implies sensitivity and if an IFS is abelian, then hypercyclicity also implies multi-sensitivity and hence thick sensitivity. We also give some equivalent conditions for hypercyclicity as well as weakly mixing for an IFS of operators.
References
- [1] A.Z. Bahabadi, Shadowing and average shadowing properties for iterated function
systems, Georgian Math. J. 22, 179–184, 2015.
- [2] A.Z. Bahabadi, On chaos for iterated function systems, Asian-Eur. J. Math. 11,
1850054, 2018.
- [3] F. Bayart and É. Matheron, Dynamics of linear operators, 179, Cambridge University
Press, Cambridge, 2009.
- [4] G. Costakis and A. Manoussos, J-class operators and hypercyclicity, J. Operator
Theory, 67, 101–119, 2012.
- [5] J.H. Elton and M. Piccioni, Iterated function systems arising from recursive estima-
tion problems, Probab. Theory Related Fields, 91, 103–114, 1992.
- [6] B. Forte and E.R. Vrscay, Solving the inverse problem for function/image approxi-
mation using iterated function systems. II. Algorithm and computations, Fractals, 2,
335–346, 1994.
- [7] F.H. Ghane, E. Rezaali, and A. Sarizadeh, Sensitivity of iterated function systems, J.
Math. Anal. Appl. 469, 493–503, 2019.
- [8] K-G. Grosse-Erdmann and A. Peris, Weakly mixing operators on topological vector
spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 104, 413–426,
2010.
- [9] K-G. Grosse-Erdmann and A. Peris, Linear chaos, Springer Science & Business Media,
2011.
- [10] J.E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30, 713–747,
1981.
- [11] M. Kostić, Chaos for linear operators and abstract differential equations, Nova Science
Publishers, New York, 2020.
- [12] C. Ma and P. Zhu, A remark on sensitivity and Li-Yorke sensitivity of iterated func-
tion systems, Qual. Theory Dyn. Syst. 18, 1–9, 2019.
- [13] M. Mohtashamipour and A.Z. Bahabadi, Accessibility on iterated function systems,
Georgian Math. J. 28 (1), 117–124, 2021.
- [14] T.K.S. Moothathu, Stronger forms of sensitivity for dynamical systems, Nonlinearity,
20, 2115–2126, 2007.
- [15] M. Murillo-Arcila and A. Peris, Chaotic behaviour on invariant sets of linear opera-
tors, Integral Equations Operator Theory, 81, 483–497, 2015.
- [16] M. Salman and R. Das, Furstenberg family and multi-sensitivity in non-autonomous
systems, J. Difference Equ. Appl. 25, 1755–1767, 2019.
- [17] M. Salman and R. Das, Multi-transitivity in non-autonomous discrete systems, Topol-
ogy Appl. 278, 107237, 2020.
- [18] M. Salman and R. Das, Sensitivity and property $P$ in non-autonomous systems,
Mediterr. J. Math. 17, 128, 2020.
- [19] X.Wu, S. Liang, Y. Luo, M. Xin and X. Zhang, A remark on limit shadowing property
for iterated function systems, U.P.B. Sci. Bull. Series A, Appl. Math. Phys. 81, 107–
114, 2019.
- [20] X. Wu, L. Wang and J. Liang, The chain properties and average shadowing property
of iterated function systems, Qual. Theory Dyn. Syst. 17, 219–227, 2018.
- [21] X. Wu and P. Zhu, On the equivalence of four chaotic operators, Appl. Math. Lett.
25, 545–549, 2012.
- [22] X. Zhang, X. Wu, Y. Luo and X. Ma, A remark on limit shadowing for hyperbolic
iterated function systems, U.P.B. Sci. Bull., Series A, Appl. Math. Phys. 81, 139–146,
2019.
Year 2021,
, 483 - 491, 11.04.2021
Mohammad Salman
,
Ruchi Das
References
- [1] A.Z. Bahabadi, Shadowing and average shadowing properties for iterated function
systems, Georgian Math. J. 22, 179–184, 2015.
- [2] A.Z. Bahabadi, On chaos for iterated function systems, Asian-Eur. J. Math. 11,
1850054, 2018.
- [3] F. Bayart and É. Matheron, Dynamics of linear operators, 179, Cambridge University
Press, Cambridge, 2009.
- [4] G. Costakis and A. Manoussos, J-class operators and hypercyclicity, J. Operator
Theory, 67, 101–119, 2012.
- [5] J.H. Elton and M. Piccioni, Iterated function systems arising from recursive estima-
tion problems, Probab. Theory Related Fields, 91, 103–114, 1992.
- [6] B. Forte and E.R. Vrscay, Solving the inverse problem for function/image approxi-
mation using iterated function systems. II. Algorithm and computations, Fractals, 2,
335–346, 1994.
- [7] F.H. Ghane, E. Rezaali, and A. Sarizadeh, Sensitivity of iterated function systems, J.
Math. Anal. Appl. 469, 493–503, 2019.
- [8] K-G. Grosse-Erdmann and A. Peris, Weakly mixing operators on topological vector
spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 104, 413–426,
2010.
- [9] K-G. Grosse-Erdmann and A. Peris, Linear chaos, Springer Science & Business Media,
2011.
- [10] J.E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30, 713–747,
1981.
- [11] M. Kostić, Chaos for linear operators and abstract differential equations, Nova Science
Publishers, New York, 2020.
- [12] C. Ma and P. Zhu, A remark on sensitivity and Li-Yorke sensitivity of iterated func-
tion systems, Qual. Theory Dyn. Syst. 18, 1–9, 2019.
- [13] M. Mohtashamipour and A.Z. Bahabadi, Accessibility on iterated function systems,
Georgian Math. J. 28 (1), 117–124, 2021.
- [14] T.K.S. Moothathu, Stronger forms of sensitivity for dynamical systems, Nonlinearity,
20, 2115–2126, 2007.
- [15] M. Murillo-Arcila and A. Peris, Chaotic behaviour on invariant sets of linear opera-
tors, Integral Equations Operator Theory, 81, 483–497, 2015.
- [16] M. Salman and R. Das, Furstenberg family and multi-sensitivity in non-autonomous
systems, J. Difference Equ. Appl. 25, 1755–1767, 2019.
- [17] M. Salman and R. Das, Multi-transitivity in non-autonomous discrete systems, Topol-
ogy Appl. 278, 107237, 2020.
- [18] M. Salman and R. Das, Sensitivity and property $P$ in non-autonomous systems,
Mediterr. J. Math. 17, 128, 2020.
- [19] X.Wu, S. Liang, Y. Luo, M. Xin and X. Zhang, A remark on limit shadowing property
for iterated function systems, U.P.B. Sci. Bull. Series A, Appl. Math. Phys. 81, 107–
114, 2019.
- [20] X. Wu, L. Wang and J. Liang, The chain properties and average shadowing property
of iterated function systems, Qual. Theory Dyn. Syst. 17, 219–227, 2018.
- [21] X. Wu and P. Zhu, On the equivalence of four chaotic operators, Appl. Math. Lett.
25, 545–549, 2012.
- [22] X. Zhang, X. Wu, Y. Luo and X. Ma, A remark on limit shadowing for hyperbolic
iterated function systems, U.P.B. Sci. Bull., Series A, Appl. Math. Phys. 81, 139–146,
2019.