Research Article
BibTex RIS Cite

Year 2021, Volume: 50 Issue: 2, 471 - 482, 11.04.2021
https://doi.org/10.15672/hujms.731098

Abstract

References

  • [1] Y. Alagöz, On m-injective and m-projective modules, Math. Sci. Appl. E-Notes, 8, 46–50, 2020.
  • [2] E. Büyükaşık and Y. Durğun, Absolutely s-pure modules and neat-flat modules, Comm. Algebra, 43 (2), 384–399, 2015.
  • [3] E. Büyükaşık and Y. Durğun, Neat-flat modules. Comm. Algebra 44 (1), 416-428, 2016.
  • [4] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting modules, Frontiers in Math- ematics, Birkh¨auser Verlag, Basel, 2006.
  • [5] I. Crivei, s-pure submodules, Int. J. Math. Math. Sci. 4, 491–497, 2005.
  • [6] S. Crivei, Neat and coneat submodules of modules over commutative rings, Bull. Aust. Math. Soc. 89 (2), 343–352, 2014.
  • [7] Y. Durğun, On some generalizations of closed submodules, Bull. Korean Math. Soc. 52 (5), 1549–1557, 2015.
  • [8] E.E. Enochs and O.M.G Jenda, Relative homological algebra, de Gruyter, Berlin, 2000.
  • [9] E.E. Enochs, O.M.G. Jenda and J.A. Lopez-Ramos, The existence of Gorenstein flat covers, Math. Scand. 94 (1), 46–62, 2004.
  • [10] C. Faith, Algebra. II, Springer-Verlag, Berlin-New York, 1976. Ring theory, Grundlehren der Mathematischen Wissenschaften, No. 191.
  • [11] X. Fu, H. Zhu and N. Ding, On Copure Projective Modules and Copure Projective Dimensions, Comm. Algebra, 40 (1), 343–359, 2012.
  • [12] L. Fuchs, Neat submodules over integral domains, Period. Math. Hungar. 64 (2), 131–143, 2012.
  • [13] M.F. Hamid, Coneat injective modules, Missouri J. Math. Sci. 31 (2), 201–211, 2019.
  • [14] K. Honda, Realism in the theory of abelian groups I, Comment. Math. Univ. St. Pauli 5, 37-75, 1956.
  • [15] H. Holm and P. Jorgensen, Covers, precovers, and purity, Illinois J. Math. 52 (2), 691–703, 2008.
  • [16] C.U. Jensen and D. Simon, Purity and generalized chain conditions, J. Pure Appl. Algebra 14, 297-305, 1979.
  • [17] T.Y. Lam, Lectures on modules and rings, Springer-Verlag, New York, 1999.
  • [18] L. Mao, When does every simple module have a projective envelope?, Comm. Algebra, 35 (5), 1505–1516, 2007.
  • [19] E. Mermut and Z. Türkoğlu, Neat submodules over commutative rings, Comm. Alge- bra, 48 (3), 1231–1248, 2020.
  • [20] W.K. Nicholson and J.F. Watters, Rings with projective socle, Proc. Amer. Math. Soc. 102, 443-450, 1988.
  • [21] J. Rada and M. Saorin, Rings characterized by (pre)envelopes and (pre)covers of their modules, Comm. Algebra, 26 (3), 899–912, 1998.
  • [22] V.S. Ramamurthi, On the injectivity and flatness of certain cyclic modules, Proc. Amer. Math. Soc. 48, 21–25, 1975.
  • [23] J.J. Rotman, An Introduction to Homological Algebra, in Pure Appl.Math., Vol. 85, Academic Press, New York, 1979.
  • [24] P.F. Smith, Injective modules and prime ideals. Comm. Algebra, 9 (9), 989–999, 1981.
  • [25] M.Y. Wang, Frobenius structure in algebra (chinese). Science Press, Beijing, 2005.
  • [26] M.Y. Wang and G. Zhao, On maximal injectivity, Acta Math. Sin. (Engl. Ser.) 21 (6), 1451–1458, 2005.
  • [27] Y. Xiang, Max-injective, max-flat modules and max-coherent rings, Bull. Korean Math. Soc. 47 (3), 611–622, 2010.

On MF-projective modules

Year 2021, Volume: 50 Issue: 2, 471 - 482, 11.04.2021
https://doi.org/10.15672/hujms.731098

Abstract

In this paper, we study the left orthogonal class of max-flat modules which are the homological objects related to s-pure exact sequences of modules and module homomorphisms. Namely, a right module $A$ is called MF-projective if ${Ext}^{1}_{R}(A,B)=0$ for any max-flat right $R$-module $B$, and $A$ is called strongly MF-projective if ${Ext}^{i}_{R}(A,B)=0$ for all max-flat right $R$-modules $B$ and all $i\geq 1$. Firstly, we give some properties of $MF$-projective modules and SMF-projective modules. Then we introduce and study MF-projective dimensions for modules and rings. The relations between the introduced dimensions and other (classical) homological dimensions are discussed. We characterize some classes of rings such as perfect rings, $QF$ rings and max-hereditary rings by $(S)MF$-projective modules. We also study the rings whose right ideals are MF-projective. Finally, we characterize the rings whose $MF$-projective modules are projective.

References

  • [1] Y. Alagöz, On m-injective and m-projective modules, Math. Sci. Appl. E-Notes, 8, 46–50, 2020.
  • [2] E. Büyükaşık and Y. Durğun, Absolutely s-pure modules and neat-flat modules, Comm. Algebra, 43 (2), 384–399, 2015.
  • [3] E. Büyükaşık and Y. Durğun, Neat-flat modules. Comm. Algebra 44 (1), 416-428, 2016.
  • [4] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting modules, Frontiers in Math- ematics, Birkh¨auser Verlag, Basel, 2006.
  • [5] I. Crivei, s-pure submodules, Int. J. Math. Math. Sci. 4, 491–497, 2005.
  • [6] S. Crivei, Neat and coneat submodules of modules over commutative rings, Bull. Aust. Math. Soc. 89 (2), 343–352, 2014.
  • [7] Y. Durğun, On some generalizations of closed submodules, Bull. Korean Math. Soc. 52 (5), 1549–1557, 2015.
  • [8] E.E. Enochs and O.M.G Jenda, Relative homological algebra, de Gruyter, Berlin, 2000.
  • [9] E.E. Enochs, O.M.G. Jenda and J.A. Lopez-Ramos, The existence of Gorenstein flat covers, Math. Scand. 94 (1), 46–62, 2004.
  • [10] C. Faith, Algebra. II, Springer-Verlag, Berlin-New York, 1976. Ring theory, Grundlehren der Mathematischen Wissenschaften, No. 191.
  • [11] X. Fu, H. Zhu and N. Ding, On Copure Projective Modules and Copure Projective Dimensions, Comm. Algebra, 40 (1), 343–359, 2012.
  • [12] L. Fuchs, Neat submodules over integral domains, Period. Math. Hungar. 64 (2), 131–143, 2012.
  • [13] M.F. Hamid, Coneat injective modules, Missouri J. Math. Sci. 31 (2), 201–211, 2019.
  • [14] K. Honda, Realism in the theory of abelian groups I, Comment. Math. Univ. St. Pauli 5, 37-75, 1956.
  • [15] H. Holm and P. Jorgensen, Covers, precovers, and purity, Illinois J. Math. 52 (2), 691–703, 2008.
  • [16] C.U. Jensen and D. Simon, Purity and generalized chain conditions, J. Pure Appl. Algebra 14, 297-305, 1979.
  • [17] T.Y. Lam, Lectures on modules and rings, Springer-Verlag, New York, 1999.
  • [18] L. Mao, When does every simple module have a projective envelope?, Comm. Algebra, 35 (5), 1505–1516, 2007.
  • [19] E. Mermut and Z. Türkoğlu, Neat submodules over commutative rings, Comm. Alge- bra, 48 (3), 1231–1248, 2020.
  • [20] W.K. Nicholson and J.F. Watters, Rings with projective socle, Proc. Amer. Math. Soc. 102, 443-450, 1988.
  • [21] J. Rada and M. Saorin, Rings characterized by (pre)envelopes and (pre)covers of their modules, Comm. Algebra, 26 (3), 899–912, 1998.
  • [22] V.S. Ramamurthi, On the injectivity and flatness of certain cyclic modules, Proc. Amer. Math. Soc. 48, 21–25, 1975.
  • [23] J.J. Rotman, An Introduction to Homological Algebra, in Pure Appl.Math., Vol. 85, Academic Press, New York, 1979.
  • [24] P.F. Smith, Injective modules and prime ideals. Comm. Algebra, 9 (9), 989–999, 1981.
  • [25] M.Y. Wang, Frobenius structure in algebra (chinese). Science Press, Beijing, 2005.
  • [26] M.Y. Wang and G. Zhao, On maximal injectivity, Acta Math. Sin. (Engl. Ser.) 21 (6), 1451–1458, 2005.
  • [27] Y. Xiang, Max-injective, max-flat modules and max-coherent rings, Bull. Korean Math. Soc. 47 (3), 611–622, 2010.
There are 27 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Yusuf Alagöz 0000-0002-2535-4679

Publication Date April 11, 2021
Published in Issue Year 2021 Volume: 50 Issue: 2

Cite

APA Alagöz, Y. (2021). On MF-projective modules. Hacettepe Journal of Mathematics and Statistics, 50(2), 471-482. https://doi.org/10.15672/hujms.731098
AMA Alagöz Y. On MF-projective modules. Hacettepe Journal of Mathematics and Statistics. April 2021;50(2):471-482. doi:10.15672/hujms.731098
Chicago Alagöz, Yusuf. “On MF-Projective Modules”. Hacettepe Journal of Mathematics and Statistics 50, no. 2 (April 2021): 471-82. https://doi.org/10.15672/hujms.731098.
EndNote Alagöz Y (April 1, 2021) On MF-projective modules. Hacettepe Journal of Mathematics and Statistics 50 2 471–482.
IEEE Y. Alagöz, “On MF-projective modules”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 2, pp. 471–482, 2021, doi: 10.15672/hujms.731098.
ISNAD Alagöz, Yusuf. “On MF-Projective Modules”. Hacettepe Journal of Mathematics and Statistics 50/2 (April2021), 471-482. https://doi.org/10.15672/hujms.731098.
JAMA Alagöz Y. On MF-projective modules. Hacettepe Journal of Mathematics and Statistics. 2021;50:471–482.
MLA Alagöz, Yusuf. “On MF-Projective Modules”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 2, 2021, pp. 471-82, doi:10.15672/hujms.731098.
Vancouver Alagöz Y. On MF-projective modules. Hacettepe Journal of Mathematics and Statistics. 2021;50(2):471-82.