Research Article
BibTex RIS Cite
Year 2021, , 471 - 482, 11.04.2021
https://doi.org/10.15672/hujms.731098

Abstract

References

  • [1] Y. Alagöz, On m-injective and m-projective modules, Math. Sci. Appl. E-Notes, 8, 46–50, 2020.
  • [2] E. Büyükaşık and Y. Durğun, Absolutely s-pure modules and neat-flat modules, Comm. Algebra, 43 (2), 384–399, 2015.
  • [3] E. Büyükaşık and Y. Durğun, Neat-flat modules. Comm. Algebra 44 (1), 416-428, 2016.
  • [4] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting modules, Frontiers in Math- ematics, Birkh¨auser Verlag, Basel, 2006.
  • [5] I. Crivei, s-pure submodules, Int. J. Math. Math. Sci. 4, 491–497, 2005.
  • [6] S. Crivei, Neat and coneat submodules of modules over commutative rings, Bull. Aust. Math. Soc. 89 (2), 343–352, 2014.
  • [7] Y. Durğun, On some generalizations of closed submodules, Bull. Korean Math. Soc. 52 (5), 1549–1557, 2015.
  • [8] E.E. Enochs and O.M.G Jenda, Relative homological algebra, de Gruyter, Berlin, 2000.
  • [9] E.E. Enochs, O.M.G. Jenda and J.A. Lopez-Ramos, The existence of Gorenstein flat covers, Math. Scand. 94 (1), 46–62, 2004.
  • [10] C. Faith, Algebra. II, Springer-Verlag, Berlin-New York, 1976. Ring theory, Grundlehren der Mathematischen Wissenschaften, No. 191.
  • [11] X. Fu, H. Zhu and N. Ding, On Copure Projective Modules and Copure Projective Dimensions, Comm. Algebra, 40 (1), 343–359, 2012.
  • [12] L. Fuchs, Neat submodules over integral domains, Period. Math. Hungar. 64 (2), 131–143, 2012.
  • [13] M.F. Hamid, Coneat injective modules, Missouri J. Math. Sci. 31 (2), 201–211, 2019.
  • [14] K. Honda, Realism in the theory of abelian groups I, Comment. Math. Univ. St. Pauli 5, 37-75, 1956.
  • [15] H. Holm and P. Jorgensen, Covers, precovers, and purity, Illinois J. Math. 52 (2), 691–703, 2008.
  • [16] C.U. Jensen and D. Simon, Purity and generalized chain conditions, J. Pure Appl. Algebra 14, 297-305, 1979.
  • [17] T.Y. Lam, Lectures on modules and rings, Springer-Verlag, New York, 1999.
  • [18] L. Mao, When does every simple module have a projective envelope?, Comm. Algebra, 35 (5), 1505–1516, 2007.
  • [19] E. Mermut and Z. Türkoğlu, Neat submodules over commutative rings, Comm. Alge- bra, 48 (3), 1231–1248, 2020.
  • [20] W.K. Nicholson and J.F. Watters, Rings with projective socle, Proc. Amer. Math. Soc. 102, 443-450, 1988.
  • [21] J. Rada and M. Saorin, Rings characterized by (pre)envelopes and (pre)covers of their modules, Comm. Algebra, 26 (3), 899–912, 1998.
  • [22] V.S. Ramamurthi, On the injectivity and flatness of certain cyclic modules, Proc. Amer. Math. Soc. 48, 21–25, 1975.
  • [23] J.J. Rotman, An Introduction to Homological Algebra, in Pure Appl.Math., Vol. 85, Academic Press, New York, 1979.
  • [24] P.F. Smith, Injective modules and prime ideals. Comm. Algebra, 9 (9), 989–999, 1981.
  • [25] M.Y. Wang, Frobenius structure in algebra (chinese). Science Press, Beijing, 2005.
  • [26] M.Y. Wang and G. Zhao, On maximal injectivity, Acta Math. Sin. (Engl. Ser.) 21 (6), 1451–1458, 2005.
  • [27] Y. Xiang, Max-injective, max-flat modules and max-coherent rings, Bull. Korean Math. Soc. 47 (3), 611–622, 2010.

On MF-projective modules

Year 2021, , 471 - 482, 11.04.2021
https://doi.org/10.15672/hujms.731098

Abstract

In this paper, we study the left orthogonal class of max-flat modules which are the homological objects related to s-pure exact sequences of modules and module homomorphisms. Namely, a right module $A$ is called MF-projective if ${Ext}^{1}_{R}(A,B)=0$ for any max-flat right $R$-module $B$, and $A$ is called strongly MF-projective if ${Ext}^{i}_{R}(A,B)=0$ for all max-flat right $R$-modules $B$ and all $i\geq 1$. Firstly, we give some properties of $MF$-projective modules and SMF-projective modules. Then we introduce and study MF-projective dimensions for modules and rings. The relations between the introduced dimensions and other (classical) homological dimensions are discussed. We characterize some classes of rings such as perfect rings, $QF$ rings and max-hereditary rings by $(S)MF$-projective modules. We also study the rings whose right ideals are MF-projective. Finally, we characterize the rings whose $MF$-projective modules are projective.

References

  • [1] Y. Alagöz, On m-injective and m-projective modules, Math. Sci. Appl. E-Notes, 8, 46–50, 2020.
  • [2] E. Büyükaşık and Y. Durğun, Absolutely s-pure modules and neat-flat modules, Comm. Algebra, 43 (2), 384–399, 2015.
  • [3] E. Büyükaşık and Y. Durğun, Neat-flat modules. Comm. Algebra 44 (1), 416-428, 2016.
  • [4] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting modules, Frontiers in Math- ematics, Birkh¨auser Verlag, Basel, 2006.
  • [5] I. Crivei, s-pure submodules, Int. J. Math. Math. Sci. 4, 491–497, 2005.
  • [6] S. Crivei, Neat and coneat submodules of modules over commutative rings, Bull. Aust. Math. Soc. 89 (2), 343–352, 2014.
  • [7] Y. Durğun, On some generalizations of closed submodules, Bull. Korean Math. Soc. 52 (5), 1549–1557, 2015.
  • [8] E.E. Enochs and O.M.G Jenda, Relative homological algebra, de Gruyter, Berlin, 2000.
  • [9] E.E. Enochs, O.M.G. Jenda and J.A. Lopez-Ramos, The existence of Gorenstein flat covers, Math. Scand. 94 (1), 46–62, 2004.
  • [10] C. Faith, Algebra. II, Springer-Verlag, Berlin-New York, 1976. Ring theory, Grundlehren der Mathematischen Wissenschaften, No. 191.
  • [11] X. Fu, H. Zhu and N. Ding, On Copure Projective Modules and Copure Projective Dimensions, Comm. Algebra, 40 (1), 343–359, 2012.
  • [12] L. Fuchs, Neat submodules over integral domains, Period. Math. Hungar. 64 (2), 131–143, 2012.
  • [13] M.F. Hamid, Coneat injective modules, Missouri J. Math. Sci. 31 (2), 201–211, 2019.
  • [14] K. Honda, Realism in the theory of abelian groups I, Comment. Math. Univ. St. Pauli 5, 37-75, 1956.
  • [15] H. Holm and P. Jorgensen, Covers, precovers, and purity, Illinois J. Math. 52 (2), 691–703, 2008.
  • [16] C.U. Jensen and D. Simon, Purity and generalized chain conditions, J. Pure Appl. Algebra 14, 297-305, 1979.
  • [17] T.Y. Lam, Lectures on modules and rings, Springer-Verlag, New York, 1999.
  • [18] L. Mao, When does every simple module have a projective envelope?, Comm. Algebra, 35 (5), 1505–1516, 2007.
  • [19] E. Mermut and Z. Türkoğlu, Neat submodules over commutative rings, Comm. Alge- bra, 48 (3), 1231–1248, 2020.
  • [20] W.K. Nicholson and J.F. Watters, Rings with projective socle, Proc. Amer. Math. Soc. 102, 443-450, 1988.
  • [21] J. Rada and M. Saorin, Rings characterized by (pre)envelopes and (pre)covers of their modules, Comm. Algebra, 26 (3), 899–912, 1998.
  • [22] V.S. Ramamurthi, On the injectivity and flatness of certain cyclic modules, Proc. Amer. Math. Soc. 48, 21–25, 1975.
  • [23] J.J. Rotman, An Introduction to Homological Algebra, in Pure Appl.Math., Vol. 85, Academic Press, New York, 1979.
  • [24] P.F. Smith, Injective modules and prime ideals. Comm. Algebra, 9 (9), 989–999, 1981.
  • [25] M.Y. Wang, Frobenius structure in algebra (chinese). Science Press, Beijing, 2005.
  • [26] M.Y. Wang and G. Zhao, On maximal injectivity, Acta Math. Sin. (Engl. Ser.) 21 (6), 1451–1458, 2005.
  • [27] Y. Xiang, Max-injective, max-flat modules and max-coherent rings, Bull. Korean Math. Soc. 47 (3), 611–622, 2010.
There are 27 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Yusuf Alagöz 0000-0002-2535-4679

Publication Date April 11, 2021
Published in Issue Year 2021

Cite

APA Alagöz, Y. (2021). On MF-projective modules. Hacettepe Journal of Mathematics and Statistics, 50(2), 471-482. https://doi.org/10.15672/hujms.731098
AMA Alagöz Y. On MF-projective modules. Hacettepe Journal of Mathematics and Statistics. April 2021;50(2):471-482. doi:10.15672/hujms.731098
Chicago Alagöz, Yusuf. “On MF-Projective Modules”. Hacettepe Journal of Mathematics and Statistics 50, no. 2 (April 2021): 471-82. https://doi.org/10.15672/hujms.731098.
EndNote Alagöz Y (April 1, 2021) On MF-projective modules. Hacettepe Journal of Mathematics and Statistics 50 2 471–482.
IEEE Y. Alagöz, “On MF-projective modules”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 2, pp. 471–482, 2021, doi: 10.15672/hujms.731098.
ISNAD Alagöz, Yusuf. “On MF-Projective Modules”. Hacettepe Journal of Mathematics and Statistics 50/2 (April 2021), 471-482. https://doi.org/10.15672/hujms.731098.
JAMA Alagöz Y. On MF-projective modules. Hacettepe Journal of Mathematics and Statistics. 2021;50:471–482.
MLA Alagöz, Yusuf. “On MF-Projective Modules”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 2, 2021, pp. 471-82, doi:10.15672/hujms.731098.
Vancouver Alagöz Y. On MF-projective modules. Hacettepe Journal of Mathematics and Statistics. 2021;50(2):471-82.