Research Article
BibTex RIS Cite
Year 2021, , 825 - 832, 07.06.2021
https://doi.org/10.15672/hujms.766283

Abstract

References

  • [1] D.D. Anderson, D.F. Anderson and R. Markanda, The rings $R(X)$ and $R\langle X\rangle$, J. Algebra, 95, 96–115, 1985
  • [2] J.T. Arnold, On the ideal theory of the Kronecker function ring and the domain $D(X)$, Canad. J. Math. 21, 558–563, 1969.
  • [3] M. D’Anna, C.A. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, in: Commutative Algebra and Applications, Walter de Gruyter, Berlin, 155–172, 2009.
  • [4] D.E. Dobbs, E. Houston, T. Lucas and M. Zafrullah, $t$–Linked overrings and Prüfer $v$–multiplication domains, Comm. Algebra, 17 (11), 2835–2852, 1989.
  • [5] S. El Baghdadi, On a class of Prüfer v–multiplication domains, Comm. Algebra, 30, 3723–3742, 2002.
  • [6] M. Fontana and S. Gabelli, On the class group and the local class group of a pullback, J. Algebra, 181, 803–835, 1996.
  • [7] M. Fontana, S. Gabelli and E. Houston, UMT-domains and domains with Prüfer integral closure, Comm. Algebra, 26, 1017–1039, 1998.
  • [8] S. Gabelli and E. Houston, Coherent-like conditions in pullbacks, Michigan Math. J. 44, 99–122, 1997.
  • [9] S. Gabelli and E.G. Houston, Ideal theory in pullbacks, in: Non-Noetherian Com- mutative Ring Theory, in: Math. Appl. 520, 199–227, Kluwer Academic, Dordrecht, 2000.
  • [10] W. Heinzer, Some properties of integral closure, Proc. Am. Math. Soc. 18, 749–753, 1967.
  • [11] B.G. Kang, Prüfer v–multiplication domains and the ring $R[X]_{N_v}$, J. Algebra 123, 151-170, 1989.
  • [12] D.J. Kwak and Y.S. Park, On $t$–flat overrings, Chinese J. Math. 23, 17–24, 1995.
  • [13] F. Lucius, Rings with a theory of greatest common divisors, Manuscripta Math. 95, 117–136, 1998.
  • [14] A. Mimouni, TW–domains and Strong Mori domains, J. Pure Appl. Algebra, 177, 79–93, 2003.
  • [15] E.M. Pirtle, Integral domains which are almost Krull, J. Sci. Hiroshima Univ. Ser. A-I Math. 32 (2), 441–447, 1968.
  • [16] F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16, 794–799, 1965.

On the transfer of some $t-$locally properties

Year 2021, , 825 - 832, 07.06.2021
https://doi.org/10.15672/hujms.766283

Abstract

In this paper, we study the transfer of some $t$-locally properties which are stable under localization to $t$-flat overrings of an integral domain $D$. We show that $D,$ $D[X],$ $D\langle X\rangle,$ $D(X)$ and $D[X]_{N_v}$ are simultaneously $t$-locally P$v$MDs (resp., $t$-locally Krull, $t$-locally G-GCD, $t$-locally Noetherian, $t$-locally Strong Mori). A complete characterization of when a pullback is a $t$-locally P$v$MD (resp., $t$-locally GCD, $t$-locally G-GCD, $t$-locally Noetherian, $t$-locally Strong Mori, $t$-locally Mori) is given. As corollaries, we investigate the transfer of some $t$-locally properties among domains of the form $D+XK[X]$, $D+XK[[X]]$ and amalgamated algebras. A particular attention is devoted to the transfer of almost Krull and locally P$v$MD properties to integral closure of a domain having the same property.

References

  • [1] D.D. Anderson, D.F. Anderson and R. Markanda, The rings $R(X)$ and $R\langle X\rangle$, J. Algebra, 95, 96–115, 1985
  • [2] J.T. Arnold, On the ideal theory of the Kronecker function ring and the domain $D(X)$, Canad. J. Math. 21, 558–563, 1969.
  • [3] M. D’Anna, C.A. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, in: Commutative Algebra and Applications, Walter de Gruyter, Berlin, 155–172, 2009.
  • [4] D.E. Dobbs, E. Houston, T. Lucas and M. Zafrullah, $t$–Linked overrings and Prüfer $v$–multiplication domains, Comm. Algebra, 17 (11), 2835–2852, 1989.
  • [5] S. El Baghdadi, On a class of Prüfer v–multiplication domains, Comm. Algebra, 30, 3723–3742, 2002.
  • [6] M. Fontana and S. Gabelli, On the class group and the local class group of a pullback, J. Algebra, 181, 803–835, 1996.
  • [7] M. Fontana, S. Gabelli and E. Houston, UMT-domains and domains with Prüfer integral closure, Comm. Algebra, 26, 1017–1039, 1998.
  • [8] S. Gabelli and E. Houston, Coherent-like conditions in pullbacks, Michigan Math. J. 44, 99–122, 1997.
  • [9] S. Gabelli and E.G. Houston, Ideal theory in pullbacks, in: Non-Noetherian Com- mutative Ring Theory, in: Math. Appl. 520, 199–227, Kluwer Academic, Dordrecht, 2000.
  • [10] W. Heinzer, Some properties of integral closure, Proc. Am. Math. Soc. 18, 749–753, 1967.
  • [11] B.G. Kang, Prüfer v–multiplication domains and the ring $R[X]_{N_v}$, J. Algebra 123, 151-170, 1989.
  • [12] D.J. Kwak and Y.S. Park, On $t$–flat overrings, Chinese J. Math. 23, 17–24, 1995.
  • [13] F. Lucius, Rings with a theory of greatest common divisors, Manuscripta Math. 95, 117–136, 1998.
  • [14] A. Mimouni, TW–domains and Strong Mori domains, J. Pure Appl. Algebra, 177, 79–93, 2003.
  • [15] E.M. Pirtle, Integral domains which are almost Krull, J. Sci. Hiroshima Univ. Ser. A-I Math. 32 (2), 441–447, 1968.
  • [16] F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16, 794–799, 1965.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Omar Ouzzaouit 0000-0001-6827-4022

Ali Tamoussit This is me 0000-0003-1078-0250

Publication Date June 7, 2021
Published in Issue Year 2021

Cite

APA Ouzzaouit, O., & Tamoussit, A. (2021). On the transfer of some $t-$locally properties. Hacettepe Journal of Mathematics and Statistics, 50(3), 825-832. https://doi.org/10.15672/hujms.766283
AMA Ouzzaouit O, Tamoussit A. On the transfer of some $t-$locally properties. Hacettepe Journal of Mathematics and Statistics. June 2021;50(3):825-832. doi:10.15672/hujms.766283
Chicago Ouzzaouit, Omar, and Ali Tamoussit. “On the Transfer of Some $t-$locally Properties”. Hacettepe Journal of Mathematics and Statistics 50, no. 3 (June 2021): 825-32. https://doi.org/10.15672/hujms.766283.
EndNote Ouzzaouit O, Tamoussit A (June 1, 2021) On the transfer of some $t-$locally properties. Hacettepe Journal of Mathematics and Statistics 50 3 825–832.
IEEE O. Ouzzaouit and A. Tamoussit, “On the transfer of some $t-$locally properties”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 3, pp. 825–832, 2021, doi: 10.15672/hujms.766283.
ISNAD Ouzzaouit, Omar - Tamoussit, Ali. “On the Transfer of Some $t-$locally Properties”. Hacettepe Journal of Mathematics and Statistics 50/3 (June 2021), 825-832. https://doi.org/10.15672/hujms.766283.
JAMA Ouzzaouit O, Tamoussit A. On the transfer of some $t-$locally properties. Hacettepe Journal of Mathematics and Statistics. 2021;50:825–832.
MLA Ouzzaouit, Omar and Ali Tamoussit. “On the Transfer of Some $t-$locally Properties”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 3, 2021, pp. 825-32, doi:10.15672/hujms.766283.
Vancouver Ouzzaouit O, Tamoussit A. On the transfer of some $t-$locally properties. Hacettepe Journal of Mathematics and Statistics. 2021;50(3):825-32.