Research Article
BibTex RIS Cite
Year 2021, , 811 - 820, 07.06.2021
https://doi.org/10.15672/hujms.768123

Abstract

References

  • [1] S. Axler, P. Bourdon and W. Ramey, Harmonic function theory, 2nd ed., Grad. Texts in Math., 137, Springer, New York, 2001.
  • [2] A.E. Djrbashian and F.A. Shamoian, Topics in the Theory of $A^{p}_{\alpha}$ Spaces, Teubner Texts in Mathematics 105, Leipzig, 1988.
  • [3] Ö.F. Doğan, Harmonic Besov spaces with small exponents, Complex Var. Elliptic Equ. 65 (6), 1051–1075, 2020.
  • [4] Ö.F. Doğan, A Class of Integral Operators Induced by Harmonic Bergman-Besov Kernels on Lebesgue Classes, arXiv:2002.03193v2 [math.CA], 2020.
  • [5] Ö.F. Doğan and A.E. Üreyen, Weighted harmonic Bloch spaces on the ball, Complex Anal. Oper. Theory 12 (5), 1143–1177, 2018.
  • [6] S. Gergün, H.T. Kaptanoğlu and A.E. Üreyen, Reproducing kernels for harmonic Besov spaces on the ball, C. R. Math. Acad. Sci. Paris 347, 735–738, 2009.
  • [7] S. Gergün, H.T. Kaptanoğlu and A.E. Üreyen, Harmonic Besov spaces on the ball, Int. J. Math. 27 (9), 1650070, 59 pp., 2016.
  • [8] M. Jevtić and M. Pavlović, Harmonic Bergman functions on the unit ball in $\mathbb R^n$, Acta Math. Hungar. 85, 81–96, 1999.
  • [9] M. Jevtić and M. Pavlović, Harmonic Besov spaces on the unit ball in $\mathbb R^n$, Rocky Mountain J. Math. 31, 1305–1316, 2001.
  • [10] H.T. Kaptanoğlu and A.E. Üreyen, Singular integral operators with Bergman-Besov kernels on the ball, Integr. Equ. Oper. Theory 91, 30 pp., 2019.
  • [11] S. Pérez-Esteva, Duality on vector-valued weighted harmonic Bergman spaces, Studia Math. 118, 37–47, 1996.
  • [12] K. Stroethoff, Harmonic Bergman spaces, in Holomorphic Spaces, Mathematical Sciences Research Institute Publications, 33, Cambridge University, Cambridge, 51– 63, 1998

A class of integral operators from Lebesgue spaces into harmonic Bergman-Besov or weighted Bloch spaces

Year 2021, , 811 - 820, 07.06.2021
https://doi.org/10.15672/hujms.768123

Abstract

We consider a class of two-parameter weighted integral operators induced by harmonic Bergman-Besov kernels on the unit ball of $\mathbb{R}^{n}$ and characterize precisely those that are bounded from Lebesgue spaces $L^{p}_{\alpha}$ into harmonic Bergman-Besov spaces $b^{q}_{\beta}$, weighted Bloch spaces $b^{\infty}_{\beta} $ or the space of bounded harmonic functions $h^{\infty}$, allowing the exponents to be different. These operators can be viewed as generalizations of the harmonic Bergman-Besov projections.

References

  • [1] S. Axler, P. Bourdon and W. Ramey, Harmonic function theory, 2nd ed., Grad. Texts in Math., 137, Springer, New York, 2001.
  • [2] A.E. Djrbashian and F.A. Shamoian, Topics in the Theory of $A^{p}_{\alpha}$ Spaces, Teubner Texts in Mathematics 105, Leipzig, 1988.
  • [3] Ö.F. Doğan, Harmonic Besov spaces with small exponents, Complex Var. Elliptic Equ. 65 (6), 1051–1075, 2020.
  • [4] Ö.F. Doğan, A Class of Integral Operators Induced by Harmonic Bergman-Besov Kernels on Lebesgue Classes, arXiv:2002.03193v2 [math.CA], 2020.
  • [5] Ö.F. Doğan and A.E. Üreyen, Weighted harmonic Bloch spaces on the ball, Complex Anal. Oper. Theory 12 (5), 1143–1177, 2018.
  • [6] S. Gergün, H.T. Kaptanoğlu and A.E. Üreyen, Reproducing kernels for harmonic Besov spaces on the ball, C. R. Math. Acad. Sci. Paris 347, 735–738, 2009.
  • [7] S. Gergün, H.T. Kaptanoğlu and A.E. Üreyen, Harmonic Besov spaces on the ball, Int. J. Math. 27 (9), 1650070, 59 pp., 2016.
  • [8] M. Jevtić and M. Pavlović, Harmonic Bergman functions on the unit ball in $\mathbb R^n$, Acta Math. Hungar. 85, 81–96, 1999.
  • [9] M. Jevtić and M. Pavlović, Harmonic Besov spaces on the unit ball in $\mathbb R^n$, Rocky Mountain J. Math. 31, 1305–1316, 2001.
  • [10] H.T. Kaptanoğlu and A.E. Üreyen, Singular integral operators with Bergman-Besov kernels on the ball, Integr. Equ. Oper. Theory 91, 30 pp., 2019.
  • [11] S. Pérez-Esteva, Duality on vector-valued weighted harmonic Bergman spaces, Studia Math. 118, 37–47, 1996.
  • [12] K. Stroethoff, Harmonic Bergman spaces, in Holomorphic Spaces, Mathematical Sciences Research Institute Publications, 33, Cambridge University, Cambridge, 51– 63, 1998
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Ömer Faruk Doğan 0000-0002-0168-1456

Publication Date June 7, 2021
Published in Issue Year 2021

Cite

APA Doğan, Ö. F. (2021). A class of integral operators from Lebesgue spaces into harmonic Bergman-Besov or weighted Bloch spaces. Hacettepe Journal of Mathematics and Statistics, 50(3), 811-820. https://doi.org/10.15672/hujms.768123
AMA Doğan ÖF. A class of integral operators from Lebesgue spaces into harmonic Bergman-Besov or weighted Bloch spaces. Hacettepe Journal of Mathematics and Statistics. June 2021;50(3):811-820. doi:10.15672/hujms.768123
Chicago Doğan, Ömer Faruk. “A Class of Integral Operators from Lebesgue Spaces into Harmonic Bergman-Besov or Weighted Bloch Spaces”. Hacettepe Journal of Mathematics and Statistics 50, no. 3 (June 2021): 811-20. https://doi.org/10.15672/hujms.768123.
EndNote Doğan ÖF (June 1, 2021) A class of integral operators from Lebesgue spaces into harmonic Bergman-Besov or weighted Bloch spaces. Hacettepe Journal of Mathematics and Statistics 50 3 811–820.
IEEE Ö. F. Doğan, “A class of integral operators from Lebesgue spaces into harmonic Bergman-Besov or weighted Bloch spaces”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 3, pp. 811–820, 2021, doi: 10.15672/hujms.768123.
ISNAD Doğan, Ömer Faruk. “A Class of Integral Operators from Lebesgue Spaces into Harmonic Bergman-Besov or Weighted Bloch Spaces”. Hacettepe Journal of Mathematics and Statistics 50/3 (June 2021), 811-820. https://doi.org/10.15672/hujms.768123.
JAMA Doğan ÖF. A class of integral operators from Lebesgue spaces into harmonic Bergman-Besov or weighted Bloch spaces. Hacettepe Journal of Mathematics and Statistics. 2021;50:811–820.
MLA Doğan, Ömer Faruk. “A Class of Integral Operators from Lebesgue Spaces into Harmonic Bergman-Besov or Weighted Bloch Spaces”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 3, 2021, pp. 811-20, doi:10.15672/hujms.768123.
Vancouver Doğan ÖF. A class of integral operators from Lebesgue spaces into harmonic Bergman-Besov or weighted Bloch spaces. Hacettepe Journal of Mathematics and Statistics. 2021;50(3):811-20.