Research Article
BibTex RIS Cite
Year 2022, , 1005 - 1012, 01.08.2022
https://doi.org/10.15672/hujms.881876

Abstract

References

  • [1] Y.-X. Hao, R.-H. Wang and C.-J. Li, Minimal quasi-Bézier surface, Appl. Math. Model. 36, 5751–5757, 2012.
  • [2] E. Kasap and F.T. Akyildiz, Surfaces with common geodesic in Minkowski 3-space, Appl. Math. Comput. 177, 260–270, 2006.
  • [3] E. Kasap, F.T. Akyildiz and K. Orbay, A generalization of surfaces family with common spatial geodesic, Appl. Math. Comput. 201, 781–789, 2008.
  • [4] C.-Y. Li, R.-H. Wang and C.-G. Zhu, Designing approximation minimal parametric surfaces with geodesics Appl. Math. Model. 37, 6415–6424, 2013.
  • [5] C.M.C. Riverros and A.M.V. Corro, Geodesics in minimal surfaces, Math. Notes, 101, 497–514, 2017.
  • [6] J. Sánchez-Reyes, On the construction of minimal surfaces from geodesics, Appl. Math. Model. 40, 1676–1682, 2016.
  • [7] J. Sánchez-Reyes and R. Dorado, Constrained design of polynomial surfaces from geodesic curves, Comput. Aided Design. 40, 49–55, 2008.
  • [8] G.-J. Wang, K. Tang and C.-L. Tai, Parametric representation of a surface pencil with a common spatial geodesic, Comput. Aided Design. 36, 447–459, 2004.
  • [9] G. Xu and G.-Z. Wang, Quintic parametric polynomial minimal surfaces and thier properties, Diff. Geom. Appl. 28, 697–704, 2010.
  • [10] D.W. Yoon, Approximation of minimal surfaces in Minkowski 3-space, preprint.

Characterizations of a helicoid and a catenoid

Year 2022, , 1005 - 1012, 01.08.2022
https://doi.org/10.15672/hujms.881876

Abstract

In the present article, we consider a parametric surface generated by the Frenet frame of a curve, and study the minimality condition for the surface. As a result, we give characterizations of a helicoid and a catenoid. Finally we show some examples of minimal surfaces generated by a circle and a helix.

References

  • [1] Y.-X. Hao, R.-H. Wang and C.-J. Li, Minimal quasi-Bézier surface, Appl. Math. Model. 36, 5751–5757, 2012.
  • [2] E. Kasap and F.T. Akyildiz, Surfaces with common geodesic in Minkowski 3-space, Appl. Math. Comput. 177, 260–270, 2006.
  • [3] E. Kasap, F.T. Akyildiz and K. Orbay, A generalization of surfaces family with common spatial geodesic, Appl. Math. Comput. 201, 781–789, 2008.
  • [4] C.-Y. Li, R.-H. Wang and C.-G. Zhu, Designing approximation minimal parametric surfaces with geodesics Appl. Math. Model. 37, 6415–6424, 2013.
  • [5] C.M.C. Riverros and A.M.V. Corro, Geodesics in minimal surfaces, Math. Notes, 101, 497–514, 2017.
  • [6] J. Sánchez-Reyes, On the construction of minimal surfaces from geodesics, Appl. Math. Model. 40, 1676–1682, 2016.
  • [7] J. Sánchez-Reyes and R. Dorado, Constrained design of polynomial surfaces from geodesic curves, Comput. Aided Design. 40, 49–55, 2008.
  • [8] G.-J. Wang, K. Tang and C.-L. Tai, Parametric representation of a surface pencil with a common spatial geodesic, Comput. Aided Design. 36, 447–459, 2004.
  • [9] G. Xu and G.-Z. Wang, Quintic parametric polynomial minimal surfaces and thier properties, Diff. Geom. Appl. 28, 697–704, 2010.
  • [10] D.W. Yoon, Approximation of minimal surfaces in Minkowski 3-space, preprint.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Zuhal Kucukarslan Yuzbasi 0000-0001-7630-5490

Dae Won Yoon 0000-0001-8620-0676

Publication Date August 1, 2022
Published in Issue Year 2022

Cite

APA Kucukarslan Yuzbasi, Z., & Yoon, D. W. (2022). Characterizations of a helicoid and a catenoid. Hacettepe Journal of Mathematics and Statistics, 51(4), 1005-1012. https://doi.org/10.15672/hujms.881876
AMA Kucukarslan Yuzbasi Z, Yoon DW. Characterizations of a helicoid and a catenoid. Hacettepe Journal of Mathematics and Statistics. August 2022;51(4):1005-1012. doi:10.15672/hujms.881876
Chicago Kucukarslan Yuzbasi, Zuhal, and Dae Won Yoon. “Characterizations of a Helicoid and a Catenoid”. Hacettepe Journal of Mathematics and Statistics 51, no. 4 (August 2022): 1005-12. https://doi.org/10.15672/hujms.881876.
EndNote Kucukarslan Yuzbasi Z, Yoon DW (August 1, 2022) Characterizations of a helicoid and a catenoid. Hacettepe Journal of Mathematics and Statistics 51 4 1005–1012.
IEEE Z. Kucukarslan Yuzbasi and D. W. Yoon, “Characterizations of a helicoid and a catenoid”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 4, pp. 1005–1012, 2022, doi: 10.15672/hujms.881876.
ISNAD Kucukarslan Yuzbasi, Zuhal - Yoon, Dae Won. “Characterizations of a Helicoid and a Catenoid”. Hacettepe Journal of Mathematics and Statistics 51/4 (August 2022), 1005-1012. https://doi.org/10.15672/hujms.881876.
JAMA Kucukarslan Yuzbasi Z, Yoon DW. Characterizations of a helicoid and a catenoid. Hacettepe Journal of Mathematics and Statistics. 2022;51:1005–1012.
MLA Kucukarslan Yuzbasi, Zuhal and Dae Won Yoon. “Characterizations of a Helicoid and a Catenoid”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 4, 2022, pp. 1005-12, doi:10.15672/hujms.881876.
Vancouver Kucukarslan Yuzbasi Z, Yoon DW. Characterizations of a helicoid and a catenoid. Hacettepe Journal of Mathematics and Statistics. 2022;51(4):1005-12.