Research Article
BibTex RIS Cite
Year 2022, , 737 - 742, 01.06.2022
https://doi.org/10.15672/hujms.914884

Abstract

References

  • [1] L. Arnold, On the asymptotic distribution of the eigenvalues of random matrices, J. Math. Anal. Appl. 20, 262-268, 1967.
  • [2] T. Chadjipantelis, S. Kounias and C. Moyssiadis, The maximum determinant of $21\times21$ $(+ 1,-1)$-matrices and D-optimal designs, J. Statist. Plan. Inference, 16, 167-178, 1987.
  • [3] U. Grenander, Probability on algebraic structures, Wiley, New York, 1963.
  • [4] J.H. Koolen and V. Moulton, Maximal energy graphs, Adv. Appl. Math. 26, 47-52, 2001.
  • [5] N. Nguyen and A.J. Miller, A review of some exchange algorithms for constructing discrete D-optimal designs, Comput. Stat. Data Anal. 14, 489-498, 1992.
  • [6] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326, 1472- 1475, 2007.
  • [7] V. Nikiforov, Extremal norms of graphs and matrices, J. Math. Sci. 182, 164-174, 2012.
  • [8] V. Nikiforov, Beyond graph energy: Norms of graphs and matrices, Linear Algebra Appl. 506, 82-138, 2016.
  • [9] R. Sitter and B. Torsney, Optimal designs for binary response experiments with two design variables, Statist. Sinica, 5, 405-419, 1995.
  • [10] E. Wigner, On the distribution of the roots of certain symmetric matrices, Ann. of Math. (2) 67, 325-327, 1958.

Extended Schatten norms of random graphs and Nikiforov conjecture

Year 2022, , 737 - 742, 01.06.2022
https://doi.org/10.15672/hujms.914884

Abstract

In this paper we give mean of $p$-th degree of singular values and upper bound of geometric mean for almost all graphs. We prove three theorems about a conjecture of V. Nikiforov for Schatten $p$-norm of graphs when $p>2$. We prove that the conjecture is true when $p$ is an even integer or when graph is a tree or a strongly regular graph with certain parameters. The strongly regular graphs with these parameters are graphs with maximal energy.

References

  • [1] L. Arnold, On the asymptotic distribution of the eigenvalues of random matrices, J. Math. Anal. Appl. 20, 262-268, 1967.
  • [2] T. Chadjipantelis, S. Kounias and C. Moyssiadis, The maximum determinant of $21\times21$ $(+ 1,-1)$-matrices and D-optimal designs, J. Statist. Plan. Inference, 16, 167-178, 1987.
  • [3] U. Grenander, Probability on algebraic structures, Wiley, New York, 1963.
  • [4] J.H. Koolen and V. Moulton, Maximal energy graphs, Adv. Appl. Math. 26, 47-52, 2001.
  • [5] N. Nguyen and A.J. Miller, A review of some exchange algorithms for constructing discrete D-optimal designs, Comput. Stat. Data Anal. 14, 489-498, 1992.
  • [6] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326, 1472- 1475, 2007.
  • [7] V. Nikiforov, Extremal norms of graphs and matrices, J. Math. Sci. 182, 164-174, 2012.
  • [8] V. Nikiforov, Beyond graph energy: Norms of graphs and matrices, Linear Algebra Appl. 506, 82-138, 2016.
  • [9] R. Sitter and B. Torsney, Optimal designs for binary response experiments with two design variables, Statist. Sinica, 5, 405-419, 1995.
  • [10] E. Wigner, On the distribution of the roots of certain symmetric matrices, Ann. of Math. (2) 67, 325-327, 1958.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Ivan Lazarevic 0000-0003-2934-9938

Publication Date June 1, 2022
Published in Issue Year 2022

Cite

APA Lazarevic, I. (2022). Extended Schatten norms of random graphs and Nikiforov conjecture. Hacettepe Journal of Mathematics and Statistics, 51(3), 737-742. https://doi.org/10.15672/hujms.914884
AMA Lazarevic I. Extended Schatten norms of random graphs and Nikiforov conjecture. Hacettepe Journal of Mathematics and Statistics. June 2022;51(3):737-742. doi:10.15672/hujms.914884
Chicago Lazarevic, Ivan. “Extended Schatten Norms of Random Graphs and Nikiforov Conjecture”. Hacettepe Journal of Mathematics and Statistics 51, no. 3 (June 2022): 737-42. https://doi.org/10.15672/hujms.914884.
EndNote Lazarevic I (June 1, 2022) Extended Schatten norms of random graphs and Nikiforov conjecture. Hacettepe Journal of Mathematics and Statistics 51 3 737–742.
IEEE I. Lazarevic, “Extended Schatten norms of random graphs and Nikiforov conjecture”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 3, pp. 737–742, 2022, doi: 10.15672/hujms.914884.
ISNAD Lazarevic, Ivan. “Extended Schatten Norms of Random Graphs and Nikiforov Conjecture”. Hacettepe Journal of Mathematics and Statistics 51/3 (June 2022), 737-742. https://doi.org/10.15672/hujms.914884.
JAMA Lazarevic I. Extended Schatten norms of random graphs and Nikiforov conjecture. Hacettepe Journal of Mathematics and Statistics. 2022;51:737–742.
MLA Lazarevic, Ivan. “Extended Schatten Norms of Random Graphs and Nikiforov Conjecture”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 3, 2022, pp. 737-42, doi:10.15672/hujms.914884.
Vancouver Lazarevic I. Extended Schatten norms of random graphs and Nikiforov conjecture. Hacettepe Journal of Mathematics and Statistics. 2022;51(3):737-42.