Research Article
BibTex RIS Cite
Year 2018, Volume: 47 Issue: 3, 513 - 519, 01.06.2018

Abstract

References

  • B. D. Acharya, S. M. Hegde, Strongly indexable graphs, Discrete Math., 93 (1991), 123129.
  • A. Ahmad, I. Javaid , M. F. Nadeem and R. Hasni, On Super edge-magic deciency of some families related to ladder graphs, Australas. J. Combin., 51, 201208, 2011.
  • A. Ahmad, M. Baca, M. F. Nadeem, On edge irregularity strength of Toeplitz graphs, U.P.B. Sci. Bull., Series A, 78(4), 155162, 2016.
  • M. Baca, Y. Bashir, M. F. Nadeem, A. Shabbir, On super edge-antimagic total labeling of Toeplitz graphs, Springer Proceedings in Mathematics & Statistics, 98 (2015), 1-11.
  • H. Enomoto, A. Lladó, T. Nakamigawa, and G. Ringel, Super edge-magic graphs, SUT J. Math., 34, 105109, 1998.
  • R. M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, The place of super edge- magic labeling among other classes of labeling, Discrete Math., 231, 153168, 2001.
  • R. M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, On the super edge-magic deciency of graphs, Electron. Notes Discrete Math., 11, 2002.
  • R. M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, On the super edge-magic deciency of graphs, Ars Combin., 78, 2006.
  • A. Kotzig and A. Rosa, Magic valuaton of nite graphs, Canad. Math. Bull., 13(4), 451461, 1970.
  • A. A. G. Ngurah, R. Simanjuntak and E.T. Baskoro, On the super edge-magic deciencies of graphs, Australas. J. Combin., 40, 314, 2008.
  • J.Y. Park, J.H. Choi and J.H. Bae, On super edge-magic labeling of some graphs, Bull. Korean Math. Soc., 45, No.1, 1121, 2008.

On super edge-magic deficiency of certain Toeplitz graphs

Year 2018, Volume: 47 Issue: 3, 513 - 519, 01.06.2018

Abstract

A graph $G$ is called edge-magic if there exists a bijective function $\phi:V(G)\cup E(G)\to\{1, 2,\dots,|V(G)|+|E(G)|\}$ such that $\phi(x)+\phi(xy)+\phi(y)=c(\phi)$ is a constant for every edge $xy\in E(G)$, called the valence of $\phi$. Moreover, $G$ is said to be super edge-magic if $\phi(V(G))=\{1,2,\dots,|V(G)|\}.$ The super edge-magic deficiency of a graph $G$, denoted by $\mu_s(G)$, is the minimum nonnegative integer $n$ such that $G\cup nK_1,$ has a super edge-magic labeling, if such integer does not exist we define $\mu_s(G)$ to be $+\infty.$ In this paper, we study the super edge-magic deficiency of some Toeplitz graphs.

References

  • B. D. Acharya, S. M. Hegde, Strongly indexable graphs, Discrete Math., 93 (1991), 123129.
  • A. Ahmad, I. Javaid , M. F. Nadeem and R. Hasni, On Super edge-magic deciency of some families related to ladder graphs, Australas. J. Combin., 51, 201208, 2011.
  • A. Ahmad, M. Baca, M. F. Nadeem, On edge irregularity strength of Toeplitz graphs, U.P.B. Sci. Bull., Series A, 78(4), 155162, 2016.
  • M. Baca, Y. Bashir, M. F. Nadeem, A. Shabbir, On super edge-antimagic total labeling of Toeplitz graphs, Springer Proceedings in Mathematics & Statistics, 98 (2015), 1-11.
  • H. Enomoto, A. Lladó, T. Nakamigawa, and G. Ringel, Super edge-magic graphs, SUT J. Math., 34, 105109, 1998.
  • R. M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, The place of super edge- magic labeling among other classes of labeling, Discrete Math., 231, 153168, 2001.
  • R. M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, On the super edge-magic deciency of graphs, Electron. Notes Discrete Math., 11, 2002.
  • R. M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, On the super edge-magic deciency of graphs, Ars Combin., 78, 2006.
  • A. Kotzig and A. Rosa, Magic valuaton of nite graphs, Canad. Math. Bull., 13(4), 451461, 1970.
  • A. A. G. Ngurah, R. Simanjuntak and E.T. Baskoro, On the super edge-magic deciencies of graphs, Australas. J. Combin., 40, 314, 2008.
  • J.Y. Park, J.H. Choi and J.H. Bae, On super edge-magic labeling of some graphs, Bull. Korean Math. Soc., 45, No.1, 1121, 2008.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Ali Ahmad

Muhammad Faisal Nadeem This is me

Ashok Gupta This is me

Publication Date June 1, 2018
Published in Issue Year 2018 Volume: 47 Issue: 3

Cite

APA Ahmad, A., Nadeem, M. F., & Gupta, A. (2018). On super edge-magic deficiency of certain Toeplitz graphs. Hacettepe Journal of Mathematics and Statistics, 47(3), 513-519.
AMA Ahmad A, Nadeem MF, Gupta A. On super edge-magic deficiency of certain Toeplitz graphs. Hacettepe Journal of Mathematics and Statistics. June 2018;47(3):513-519.
Chicago Ahmad, Ali, Muhammad Faisal Nadeem, and Ashok Gupta. “On Super Edge-Magic Deficiency of Certain Toeplitz Graphs”. Hacettepe Journal of Mathematics and Statistics 47, no. 3 (June 2018): 513-19.
EndNote Ahmad A, Nadeem MF, Gupta A (June 1, 2018) On super edge-magic deficiency of certain Toeplitz graphs. Hacettepe Journal of Mathematics and Statistics 47 3 513–519.
IEEE A. Ahmad, M. F. Nadeem, and A. Gupta, “On super edge-magic deficiency of certain Toeplitz graphs”, Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 3, pp. 513–519, 2018.
ISNAD Ahmad, Ali et al. “On Super Edge-Magic Deficiency of Certain Toeplitz Graphs”. Hacettepe Journal of Mathematics and Statistics 47/3 (June 2018), 513-519.
JAMA Ahmad A, Nadeem MF, Gupta A. On super edge-magic deficiency of certain Toeplitz graphs. Hacettepe Journal of Mathematics and Statistics. 2018;47:513–519.
MLA Ahmad, Ali et al. “On Super Edge-Magic Deficiency of Certain Toeplitz Graphs”. Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 3, 2018, pp. 513-9.
Vancouver Ahmad A, Nadeem MF, Gupta A. On super edge-magic deficiency of certain Toeplitz graphs. Hacettepe Journal of Mathematics and Statistics. 2018;47(3):513-9.